• Chinese Optics Letters
  • Vol. 21, Issue 6, 063801 (2023)
Xiaomei Dong1、2, Yuhan Du2, Miaohua Xu2、*, Yutong Li3、4, Zhe Zhang3、4、**, and Yingjun Li1、***
Author Affiliations
  • 1State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • 2School of Science, China University of Mining and Technology (Beijing), Beijing 100089, China
  • 3Institute Key Laboratory of Optic Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 4Songshan Lake Materials Laboratory, Dongguan 523808, China
  • show less
    DOI: 10.3788/COL202321.063801 Cite this Article Set citation alerts
    Xiaomei Dong, Yuhan Du, Miaohua Xu, Yutong Li, Zhe Zhang, Yingjun Li. Effects of laser waveform on the generation of fast electrons in laser–solid interactions[J]. Chinese Optics Letters, 2023, 21(6): 063801 Copy Citation Text show less
    References

    [1] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, R. J. Mason. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas, 1, 1626(1994).

    [2] J. Zhang, W. Wang, X. Yang, D. Wu, Y. Ma, J. Jiao, Z. Zhang, F. Wu, X. Yuan, Y. Li, J. Zhu. Double-cone ignition scheme for inertial confinement fusion. Phil. Trans. R. Soc. A, 378, 20200015(2020).

    [3] T. Johzaki, Y. Nakao, K. Mima. Fokker–Planck simulations for core heating in subignition cone-guiding fast ignition targets. Phys. Plasmas, 16, 062706(2009).

    [4] T. Yokota, Y. Nakao, T. Johzaki, K. Mima. Two-dimensional relativistic Fokker-Planck model for core plasma heating in fast ignition targets. Phys. Plasmas, 13, 022702(2006).

    [5] M. Hata, H. Sakagami, A. Sunahara, T. Johzaki, H. Nagatomo. Effects of CH foam preplasma on fast ignition. Laser Part. Beams, 30, 189(2012).

    [6] T. Nakamura, H. Sakagami, T. Johzaki, H. Nagatomo, K. Mima, J. Koga. Optimization of cone target geometry for fast ignition. Phys. Plasmas, 14, 103105(2007).

    [7] T. Johzaki, H. Nagatomo, A. Sunahara, H. Cai, H. Sakagami, Y. Nakao, K. Mima. Pre-plasma effects on core heating and enhancing heating efficiency by extended double cone for FIREX. Nucl. Fusion, 51, 073022(2011).

    [8] W. Theobald, A. A. Solodov, C. Stoeckl, K. S. Anderson, F. N. Beg, R. Epstein, G. Fiksel, E. M. Giraldez, V. Y. Glebov, H. Habara, S. Ivancic, L. C. Jarrott, F. J. Marshall, G. McKiernan, H. S. McLean, C. Mileham, P. M. Nilson, P. K. Patel, F. Pérez, T. C. Sangster, J. J. Santos, H. Sawada, A. Shvydky, R. B. Stephens, M. S. Wei. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion. Nat. Commun., 5, 5785(2014).

    [9] R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, T. Jitsuno, Y. Kitagawa, K. M. Krushelnick, K. L. Lancaster, K. Mima, K. Nagai, M. Nakai, H. Nishimura, T. Norimatsu, P. A. Norreys, S. Sakabe, K. A. Tanaka, A. Youssef, M. Zepf, T. Yamanaka. Fast heating scalable to laser fusion ignition. Nature, 418, 933(2002).

    [10] H. Cai, S. Zhu, X. He. Effects of the imposed magnetic field on the production and transport of relativistic electron beams. Phys. Plasmas, 20, 072701(2013).

    [11] M. Hata, H. Sakagami, T. Johzaki, H. Nagatomo. Effects of laser profiles on fast electron generation under the same laser energy. Laser Part. Beams, 31, 371(2013).

    [12] J. Zhang, L. Chen, Y. Li, H. Teng, T. Lang, Z. Sheng, Q. Dong, L. Zhao, Z. Wei, X. Tang. Effect of laser polarization on the injection direction of superheated electrons in femtosecond laser plasma. Prog. Nat. Sci., 13, 533(2003).

    [13] T. Nakamura, H. Nagatomo, T. Johzaki, H. Sakagami, K. Mima. Numerical study on optimization of cone target and ignition pulse shape for fast ignition. J. Phys., 112, 022049(2008).

    [14] S. Kojima, Y. Arikawa, A. Morace, M. Hata, H. Nagatomo, T. Ozaki, S. Sakata, S. H. Lee, K. Matsuo, K. F. F. Law, S. Tosaki, A. Yogo, T. Johzaki, A. Sunahara, H. Sakagami, M. Nakai, H. Nishimura, H. Shiraga, S. Fujioka, H. Azechi. Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration. J. Phys., 717, 012102(2016).

    [15] S. A. Ghasemi, M. Pishdast, J. A. Yazdanpanah. Numerical investigation of plasma heating during the entrance of an intense short laser pulse into a density profile. Laser Phys., 30, 016001(2020).

    [16] G. Zhang, D. Zou, Y. Ma, H. Zhou, F. Shao, X. Yang, Z. Ge, Y. Yin, T. Yu, C. Tian, L. Gan, J. Ouyang, N. Zhao. Effects of pulse temporal profile on electron bow-wave injection of electrons in laser-driven bubble acceleration. Acta Phys. Sin., 62, 205203(2013).

    [17] A. K. Upadhyay, S. A. Samant, S. Krishnagopal. Role of the laser pulse-length in producing high-quality electron beams in a homogenous plasma. Phys. Plasmas, 19, 073110(2012).

    [18] Y. Huang. Simulation research on chirped laser plasma electron acceleration(2016).

    [19] M. Bake, B. Xie, S. Dulat, A. Aimidula. Electron acceleration in wakefield and supra-bubble regimes by ultraintense laser with asymmetric pulse. Commum. Theor. Phys., 55, 883(2011).

    [20] H. K. Malik, R. Gill. Control of peaks of terahertz radiation and tuning of its frequency and intensity. Phys. Lett. A, 382, 2715(2018).

    [21] D. K. Kuri. Role of laser pulse asymmetry in electron acceleration in vacuum in the presence of an axial magnetic field. Phys. Plasmas, 27, 123102(2020).

    [22] Y. Yao, C. Lu, S. Xu, J. Ding, T. Jia, S. Zhang, Z. Sun. Femtosecond pulse shaping technology and its applications. Acta Phys. Sin., 63, 184201(2014).

    [23] H. Zou, C. Zhou. Femtosecond pulse shaping with space-time conversion technique. Laser Optoelectron. Prog., 42, 2(2005).

    [24] S. Chen. Study on femtosecond laser pulses shaping and measurement technology(2007).

    [25] L. Ji, B. Shen, X. Zhang, F. Wang, Z. Jin, C. Xia, M. Wen, W. Wang, J. Xu, M. Yu. Generating quasi-single-cycle relativistic laser pulses by laser-foil interaction. Phys. Rev. Lett., 103, 215005(2009).

    [26] M. S. Hur, Y. K. Kim, V. V. Kulagin, I. Nam, H. Suk. Versatile shaping of a relativistic laser pulse from a nonuniform overdense plasma. Phys. Plasmas, 19, 073114(2012).

    [27] T. D. Arber, K. Bennett, C. S. Brady, D. A. Lawrence, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, C. P. Ridgers. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion, 57, 113001(2015).

    [28] X. Liu, S. Liu, X. Yang. Strong Langmuir turbulence excited by laser near critical surface. Laser Technol., 31, 213(2007).

    [29] F. Brunel. Not-so-resonant, resonant absorption. Phys. Rev. Lett., 59, 52(1987).

    [30] D. W. Forslund, J. M. Kindel, K. Lee. Theory of hot-electron spectra at high laser intensity. Phys. Rev. Lett., 39, 284(1977).

    [31] W. L. Kruer, K. Estabrook. J×B heating by very intense laser light. Phys. Fluids, 28, 430(1985).

    [32] S. C. Wilks. Simulations of ultraintense laser–plasma interactions. Phys. Fluids B, 5, 2603(1993).

    [33] H. Cai, K. Mima, A. Sunahara, T. Johzaki, H. Nagatomo, S. Zhu, X. He. Prepulse effects on the generation of high energy electrons in fast ignition scheme. Phys. Plasmas, 17, 023106(2010).

    [34] E. Lefebvre, G. Bonnaud. Nonlinear electron heating in ultrahigh-intensity-laser–plasma interaction. Phys. Rev. E, 55, 1011(1997).

    [35] W. Yu, V. Bychenkov, Y. Sentoku, M. Yu, Z. Sheng, K. Mima. Electron acceleration by a short relativistic laser pulse at the front of solid targets. Phys. Rev. Lett., 85, 570(2000).

    Xiaomei Dong, Yuhan Du, Miaohua Xu, Yutong Li, Zhe Zhang, Yingjun Li. Effects of laser waveform on the generation of fast electrons in laser–solid interactions[J]. Chinese Optics Letters, 2023, 21(6): 063801
    Download Citation