[1] M CHEN, A T TANG, S M LIU et al. Effect of TiCN and Mo addition on microstructure and mechanical properties of iron matrix composites. Journal of Functional Materials, 44, 3378-3382, 3387(2013).
陈敏, 汤爱涛, 刘胜明. TiCN复合粉及Mo添加剂对铁基复合材料组织和性能的影响. 功能材料, 44, 3378-3382, 3387(2013).
[2] L YANG, Y CHENG, X G WANG et al. Ru-containing single crystal superalloys. Journal of Shenyang University of Technology, 43, 284-289(2021).
杨林, 程印, 王新广. Mo对含Ru单晶高温合金显微组织和蠕变性能的影响. 沈阳工业大学学报, 43, 284-289(2021).
[3] C F WANG, Q CAI, J X LIU et al. Effects of Mo content on microstructure and mechanical properties of Ti-Mo alloys prepared by powder metallurgy. The Chinese Journal of Nonferrous Metals, 33, 328-342(2023).
王楚凡, 蔡奇, 刘金旭. Mo含量对粉末冶金Ti-Mo合金组织与力学性能的影响. 中国有色金属学报, 33, 328-342(2023).
[4] S L LI, P HU, Y DUAN et al. Research status of the effect of doping methods on microstructure and mechanical properties of molybdenum alloy. Materials Reports, 34, 132-142(2020).
李世磊, 胡平, 段毅. 掺杂方式对钼合金组织与力学性能影响的研究进展. 材料导报, 34, 132-142(2020).
[5] Y H LU, A MAKISHIMA, E NAKAMURA. Hf and Ta by ICP-MS. Chemical Geology, 236, 13-26(2007).
[6] A EL-TAHER. Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF). Applied Radiation and Isotopes, 70, 350-354(2012).
[7] T NAKAZAWA, K TSUJI. Development of a high-resolution confocal micro-XRF instrument equipped with a vacuum chamber. X-Ray Spectrometry, 42, 374-379(2013).
[8] 蒋克旭, 邓桂春, 姚林. 硫氰酸盐分光光度法测定钼精矿的含钼量. 稀有金属与硬质合金, 38, 52-55(2010).
K X JIANG, G C DENG, L YAO et al. Thiocyanate spectrophotometric determination of the molybdenum content in molybdenum concentrate. Rare Metals and Cemented Carbides, 38, 52-55(2010).
[9] Z R ZOU, Y J DENG, J HU et al. Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-a review. Analytica Chimica Acta, 1019, 25-37(2018).
[10] D W HAHN, N OMENETTO. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Applied Spectroscopy, 66, 347-419(2012).
[11] B BUSSER, S MONCAYO, J L COLL et al. Elemental imaging using laser-induced breakdown spectroscopy: a new and promising approach for biological and medical applications. Coordination Chemistry Reviews, 358, 70-79(2018).
[12] L B GUO, Z H ZHU, J M LI et al. Determination of boron with molecular emission using laser-induced breakdown spectroscopy combined with laser-induced radical fluorescence. Optics Express, 26, 2634-2642(2018).
[13] Y GUO, L B GUO, Z Q HAO et al. Accuracy improvement of iron ore analysis using laser-induced breakdown spectroscopy with a hybrid sparse partial least squares and least-squares support vector machine model. Journal of Analytical Atomic Spectrometry, 33, 1330-1335(2018).
[14] R S HARMON, R E RUSSO, R R HARK. Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: a comprehensive review. Spectrochimica Acta-Part B Atomic Spectroscopy, 87, 11-26(2013).
[15] D V BABOS, A CRUZ-CONESA, E R PEREIRA-FILHO et al. Direct determination of Al and Pb in waste printed circuit boards (PCB) by laser-induced breakdown spectroscopy (LIBS): evaluation of calibration strategies and economic - environmental questions. Journal of Hazardous Materials, 399, 122831(2020).
[16] S W HUDSON, J CRAPARO, R DE SARO et al. Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing. Metallurgical and Materials Transactions B, 48, 2731-2742(2017).
[17] D GIRÓN, T DELGADO, J RUIZ et al.
[18] V F CHEVRIER, R ROY, P Y MESLIN et al. Geochemical and spectral characterization of an altered Antarctic dolerite: implications for recent weathering on Mars. Planetary and Space Science, 194, 105106(2020).
[19] Y L ZOU, Y ZHU, Y F BAI et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission. Advances in Space Research, 67, 812-823(2021).
[20] K M MUHAMMED SHAMEEM, A CHAWLA, M MALLYA et al. Laser-induced breakdown spectroscopy-Raman: an effective complementary approach to analyze renal-calculi. Journal of Biophotonics, 11(2018).
[21] Y M WANG, D HUANG, K Q SHU et al. Optimization of machine learning classification models for tumor cells based on cell elements heterogeneity with laser-induced breakdown spectroscopy. Journal of Biophotonics, 16(2023).
[22] J KANG, R H LI, Y R WANG et al. Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber. Journal of Analytical Atomic Spectrometry, 32, 2292-2299(2017).
[23] S SONI, J VILJANEN, R UUSITALO et al. Phosphorus quantification in soil using LIBS assisted by laser-induced fluorescence. Heliyon, 9(2023).
[24] J M LI, M L XU, Q X MA et al. Sensitive determination of silicon contents in low-alloy steels using micro laser-induced breakdown spectroscopy assisted with laser-induced fluorescence. Talanta, 194, 697-702(2019).
[25] Y H JIANG, J KANG, Y R WANG et al. Rapid and sensitive analysis of trace leads in medicinal herbs using laser-induced breakdown spectroscopy-laser-induced fluorescence (LIBS-LIF). Applied Spectroscopy, 73, 1284-1291(2019).
[26] Y TANG, L B GUO, J M LI et al. Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption. Journal of Analytical Atomic Spectrometry, 33, 1683-1688(2018).
[27] Y TANG, S X MA, R YUAN et al. Spectral interference elimination and self-absorption reduction in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption. Optics and Lasers in Engineering, 134, 106254(2020).