• Matter and Radiation at Extremes
  • Vol. 9, Issue 3, 037601 (2024)
Zhiyu Zhang1,2, Yang Zhao1,2, Xiaoying Han3, Liling Li1,2..., Bo Qing1,2, Lifei Hou1,2, Yulong Li1,2, YuXue Zhang1,2, Huan Zhang1,2, Xiangming Liu1,2, Bo Deng1,2, Gang Xiong1,2, Min Lv1,2, Tuo Zhu1,2, Chengwu Huang1,2, Tianming Song1,2, Yan Zhao1,2, Yingjie Li1,2, Lu Zhang1,2, Xufei Xie1,2, Jiyan Zhang1,2 and Jiamin Yang1,2|Show fewer author(s)
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 2National Key Laboratory of Plasma Physcis, Mianyang 621900, China
  • 3Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • show less
    DOI: 10.1063/5.0177038 Cite this Article
    Zhiyu Zhang, Yang Zhao, Xiaoying Han, Liling Li, Bo Qing, Lifei Hou, Yulong Li, YuXue Zhang, Huan Zhang, Xiangming Liu, Bo Deng, Gang Xiong, Min Lv, Tuo Zhu, Chengwu Huang, Tianming Song, Yan Zhao, Yingjie Li, Lu Zhang, Xufei Xie, Jiyan Zhang, Jiamin Yang. Self-consistent and precise measurement of time-dependent radiative albedo of gold based on specially symmetrical triple-cavity Hohlraum[J]. Matter and Radiation at Extremes, 2024, 9(3): 037601 Copy Citation Text show less
    References

    [1] J. D.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).

    [2] P.Amendt, R. L.Berger, S. G.Glendinning, S. H.Glenzer, S. W.Haan, R. L.Kauffman, O. L.Landen, J. D.Lindl, L. J.Suter. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339(2004).

    [3] S.Atzeni, J.Meyer-ter Vehn. The Physics of Inertial Fusion(2004).

    [4] H.Abu-Shawareb et al. Achievement of target gain larger than unity in an inertial fusion experiment. Phys. Rev. Lett, 132, 065102(2024).

    [5] L. J.Atherton, L. R.Benedetti, D. K.Bradley, D. A.Callahan, P. M.Celliers, C. J.Cerjan, D. S.Clark, E. L.Dewald, S. N.Dixit, T.D?ppner, D. H.Edgell, M. J.Edwards, R.Epstein, S.Glenn, S. H.Glenzer, G.Grim, S. W.Haan, B. A.Hammel, D.Hicks, W. W.Hsing, N.Izumi, O. S.Jones, M. H.Key, S. F.Khan, J. D.Kilkenny, J. L.Kline, G. A.Kyrala, O. L.Landen, S.Le Pape, J. D.Lindl, T.Ma, B. J.MacGowan, A. J.Mackinnon, A. G.MacPhee, N. B.Meezan, J. D.Moody, E. I.Moses, A.Pak, T.Parham, H.-S.Park, P. K.Patel, J. E.Ralph, S. P.Regan, B. A.Remington, H. F.Robey, J. S.Ross, V.Smalyuk, B. K.Spears, P. T.Springer, L. J.Suter, R.Tommasini, R. P.Town, S. V.Weber. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions. Phys. Rev. Lett., 111, 085004(2013).

    [6] L. J.Atherton, S.Batha, R.Benedetti, L.Bernstein, R.Betti, D. L.Bleuel, T. R.Boehly, D. K.Bradley, J. A.Caggiano, D. A.Callahan, P. M.Celliers, C. J.Cerjan, K. C.Chen, D. S.Clark, G. W.Collins, E. L.Dewald, L.Divol, S.Dixit, T.Doeppner, D. H.Edgell, M. J.Edwards, J. E.Fair, M.Farrell, R. J.Fortner, J.Frenje, M. G.Gatu Johnson, E.Giraldez, V. Y.Glebov, S. H.Glenzer, G.Grim, S. W.Haan, B. A.Hammel, A. V.Hamza, D. R.Harding, S. P.Hatchett, N.Hein, H. W.Herrmann, D.Hicks, D. E.Hinkel, M.Hoppe, W. W.Hsing, N.Izumi, B.Jacoby, O. S.Jones, D.Kalantar, R.Kauffman, J. D.Kilkenny, J. L.Kline, J. P.Knauer, J. A.Koch, B. J.Kozioziemski, G.Kyrala, K. N.LaFortune, O. L.Landen, R. J.Leeper, R.Lerche, J. D.Lindl, T.Ma, B. J.MacGowan, A. J.MacKinnon, A.Macphee, E. R.Mapoles, M. M.Marinak, M.Mauldin, P. W.McKenty, M.Meezan, P. A.Michel, J.Milovich, J. D.Moody, M.Moran, E. I.Moses, D. H.Munro, A.Nikroo, C. L.Olson, K.Opachich, A. E.Pak, S. L.Pape, T.Parham, H.-S.Park, P. K.Patel, R.Petrasso, J. E.Ralph, S. P.Regan, B.Remington, H.Rinderknecht, H. F.Robey, M.Rosen, S.Ross, J. D.Salmonson, T. C.Sangster, J.Sater, D. H.Schneider, F. H.Séguin, S. M.Sepke, D. A.Shaughnessy, V. A.Smalyuk, B. K.Spears, P. T.Springer, C.Stoeckl, W.Stoeffl, L.Suter, C. A.Thomas, R.Tommasini, R. P.Town, S. V.Weber, P. J.Wegner, K.Widman, M.Wilke, D. C.Wilson, C. B.Yeamans, A.Zylstra. Progress towards ignition on the National Ignition Facility. Phys. Plasmas, 20, 070501(2013).

    [7] D. S.Clark, D. C.Eder, S. W.Haan, B. A.Hammel, D. E.Hinkel, O. S.Jones, M. M.Marinak, J. L.Milovich, H. F.Robey, L. J.Suter, R. P. J.Town. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility. Phys. Plasmas, 20, 056318(2013).

    [8] J.Edwards, O.Landen, J.Lindl, E.Moses, NICTeam. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [9] M.Barrios, L. R.Benedetti, L. F.Berzak Hopkins, D. K.Bradley, P. M.Celliers, E. L.Dewald, T.D?ppner, D. C.Eder, M. J.Edwards, J. E.Field, S. M.Glenn, S. W.Haan, N.Izumi, O. S.Jones, S. F.Khan, J. D.Kilkenny, J. L.Kline, A.Kritcher, G. A.Kyrala, O. L.Landen, T.Ma, J. L.Milovich, J. D.Moody, S. R.Nagel, A.Pak, J. L.Peterson, H. F.Robey, J. S.Ross, J. R.Rygg, R. H. H.Scott, B. K.Spears, R.Tommasini, R. P. J.Town. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility. Phys. Plasmas, 21, 056313(2014).

    [10] L. F.Berzak Hopkins, D. A.Callahan, E. L.Dewald, T. R.Dittrich, T.D?ppner, D. E.Hinkel, O. A.Hurricane, J. L.Kline, S.Le Pape, T.Ma, J. L.Milovich, J. C.Moreno, H.-S.Park, P. K.Patel, B. A.Remington, J. D.Salmonson. Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility. Phys. Rev. Lett., 112, 055002(2014).

    [11] L. F.Berzak Hopkins, D. A.Callahan, D. T.Casey, E. L.Dewald, T. R.Dittrich, T.D?ppner, D. E.Hinkel, O. A.Hurricane, J. L.Kline, S.Le Pape, T.Ma, H.-S.Park, P. K.Patel, B. A.Remington, H. F.Robey, J. D.Salmonson. High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility. Phys. Rev. Lett., 112, 055001(2014).

    [12] Z.Dai, J.Gu, P.Gu, W.Ye, W.Zheng, S.Zhu, S.Zou. Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions. Matter Radiat. Extremes, 2, 9(2017).

    [13] B.Bachmann, K. L.Baker, R.Benedetti, R. L.Berger, R.Bionta, D. A.Callahan, D. T.Casey, P. M.Celliers, D.Clark, D.Fittinghoff, M.Gatu Johnson, C.Goyon, G.Grim, R.Hatarik, M.Hohenberger, O. A.Hurricane, N.Izumi, S.Khan, G.Kyrala, O. L.Landen, T.Ma, M.Millot, J. L.Milovich, S. R.Nagel, R.Nora, A.Pak, P. K.Patel, B. K.Spears, D.Strozzi, C. A.Thomas, D.Turnbull, P. L.Volegov, T.Woods, C.Yeamans. High-performance indirect-drive cryogenic implosions at high adiabat on the National Ignition Facility. Phys. Rev. Lett., 121, 135001(2018).

    [14] B.Bachmann, K. L.Baker, L. R.Benedetti, R. L.Berger, J.Biener, R. M.Bionta, D. A.Callahan, D. T.Casey, J.Crippen, D. N.Fittinghoff, J. A.Frenje, M.Gatu Johnson, C. S.Goyon, G. P.Grim, M.Hohenberger, O. A.Hurricane, N.Izumi, J.Jaquez, C.Jarrott, K.Kangas, S. F.Khan, C.Kong, O. L.Landen, T.Ma, B. J.MacGowan, M.Millot, J. L.Milovich, S. R.Nagel, A.Nikroo, R. C.Nora, A.Pak, P. K.Patel, N.Rice, B. K.Spears, M.Stadermann, D. J.Strozzi, C. A.Thomas, P. L.Volegov, C. R.Weber, C.Wild, D. T.Woods, C. B.Yeamans. The high velocity, high adiabat, bigfoot campaign and tests of indirect-drive implosion scaling. Phys. Plasmas, 25, 056308(2018).

    [15] B.Bachmann, K.Baker, S.Bhandarkar, J.Biener, R.Bionta, T.Braun, M.Bruhn, D. A.Callahan, D. T.Casey, C.Choate, D.Clark, J. M.Di Nicola, L.Divol, T.Doeppner, M. J.Edwards, V.Geppert-Kleinrath, S.Haan, J.Heebner, V.Hernandez, M.Herrmann, D.Hinkel, M.Hohenberger, H.Huang, O. A.Hurricane, C.Kong, A. L.Kritcher, O.Landen, S.Le Pape, D.Mariscal, E.Marley, L.Masse, K. D.Meaney, M.Millot, A.Moore, K.Newman, A.Nikroo, A.Pak, P.Patel, L.Pelz, J.Ralph, N.Rice, H.Robey, J. S.Ross, M.Rubery, J.Salmonson, D.Schlossberg, S.Sepke, K.Sequoia, M.Stadermann, D.Strozzi, R.Tommasini, R.Town, P.Volegov, C.Weber, C.Wild, S.Yang, C.Young, A. B.Zylstra. Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Phys. Plasmas, 28, 072706(2021).

    [16] K. M.Campbell, E. L.Dewald, S. H.Glenzer, B. A.Hammel, J. H.Hammer, O. S.Jones, R. L.Kauffman, O. L.Landen, M. D.Rosen, L. J.Suter, R. E.Turner, R. J.Wallace, F. A.Weber. Measurement of the absolute hohlraum-wall albedo under ignition foot drive conditions. Phys. Rev. Lett., 93, 065002(2004).

    [17] T.Endo, Y.Kato, K.Kondo, S.Nakai, T.Nishikawa, H.Nishimura, H.Shiraga, K.Sugimoto, H.Takabe. X-ray emission and transport in gold plasmas generated by 351-nm laser irradiation. Phys. Rev. A, 43, 3073(1991).

    [18] K.Eidmann, T.Endo, I. B.F?ldes, Y.Kato, T.L?wer, J.Massen, S.Nakai, H.Nishimura, H.Shiraga, R.Sigel, M.Takagi, G. D.Tsakiris, S.Witkowski. X-ray reemission from CH foils heated by laser-generated intense thermal radiation. Phys. Rev. E, 50, R690(1994).

    [19] K.Eidmann, T.Endo, I. B.F?ldes, Y.Kato, T.L?wer, J.Massen, S.Nakai, H.Nishimura, H.Shiraga, R.Sigel, M.Takagi, G. D.Tsakiris, S.Witkowski. Radiative heating of low-Z solid foils by laser-generated x rays. Phys. Rev. E, 52, 6703(1995).

    [20] K.Eidmann, R.Fedosejevs, F.Lavarenne, J.Massen, J.Meyer-ter Vehn, M.Murakami, H.Nishimura, R.Sigel, G.Tsakiris, S.Witkowskiet?al.. Experimental investigation of radiation heat waves driven by laser-induced Planck radiation. Phys. Rev. A, 45, 3987(1992).

    [21] F.Bin, F.Dianyuan, H.Dongxia, J.Feng, Z.Hai, Y.Haiwu, W.Jianjun, S.Jingqin, Z.Kuixin, G.Liangfu, L.Mingzhong, Z.Qihua, H.Shaobo, Z.Wanguo, Z.Weiyan, J.Xiaodong, Y.Xiaodong, W.Xiaofeng, Z.Xiaomin, L.Xiaoqun, X.Yong, Y.Yong, S.Zhan, P.Zhitao. Status of the SG-III solid-state laser facility. J. Phys.: Conf. Ser., 112, 032009(2008).

    [22] Y.Chen, W.Dai, Z.Dang, X.Deng, B.Feng, L.Guo, D.Hu, H.Jia, F.Jing, D.Lin, L.Liu, Z.Peng, F.Wang, F.Wang, X.Wei, Y.Xiang, X.Xie, D.Xu, X.Yuan, R.Zhang, X.Zhang, W.Zheng, W.Zhou, Q.Zhu. Laser performance upgrade for precise ICF experiment in SG-III laser facility. Matter Radiat. Extremes, 2, 243(2017).

    [23] J.Chen, Y.Chen, Y.Ding, H.Du, L.Guo, L.Hou, Y.Huang, W.Huo, S.Jiang, X.Jiang, K.Lan, S.Li, Z.Li, S.Liu, G.Ren, K.Ren, F.Wang, X.Xie, D.Yang. Application of the space-resolving flux detector for radiation measurements from an octahedral-aperture spherical hohlraum. Rev. Sci. Instrum., 89, 063502(2018).

    [24] Y.Ding, X.Jiang, S.Liu, L.Mei, X.Peng, F.Wang, T.Xu. A line-imaging velocity interferometer technique for shock diagnostics without x-ray preheat limitation. Rev. Sci. Instrum., 82, 103108(2011).

    [25] Y.Ding, Y.Huang, S.Jiang, L.Jing, L.Kuang, H.Li, L.Li, Z.Lin, D.Yang, L.Zhang. Angular radiation temperature simulation for time-dependent capsule drive prediction in inertial confinement fusion. Phys. Plasmas, 22, 022709(2015).

    [26] Y.Ding, H.Du, L.Guo, T.Huang, S.Jiang, X.Jiang, S.Li, Z.Li, S.Liu, Y.Liu, T.Song, J.Yang, R.Yi, X.Zhao, J.Zheng. A novel flat-response x-ray detector in the photon energy range of 0.1–4 keV. Rev. Sci. Instrum., 81, 073504(2010).

    [27] Y.Jiamin, Y.Rongqing, S.Tianming. Recover soft x-ray spectrum using virtual flat response channels with filtered x-ray diode array. Rev. Sci. Instrum., 83, 113102(2012).

    [28] Z.Cao, X.Che, B.Deng, K.Deng, Y.Ding, H.Du, L.Guo, L.Hou, S.Jiang, X.Jiang, S.Li, X.Li, Z.Li, S.Liu, P.Song, F.Wang, Q.Wang, X.Xie, T.Xu, D.Yang, J.Yang, Y.Yang, W.Zha, B.Zhang, C.Zheng, W.Zheng. Experimental and simulation studies on gold bubble movement in gas-filled hohlraums. Nucl. Fusion, 59, 016002(2019).

    [29] Y.Cui, H.Du, L.Guo, L.Hou, S.Li, Z.Li, S.Liu, D.Yang, J.Yang, J.Zhenget?al.. A compact flat-response x-ray detector for the radiation flux in the range from 1.6 keV to 4.4 keV. Meas. Sci. and Technol., 23, 065902(2012).

    [30] D. K.Bradley, G. W.Collins, R. J.Leeper, R. E.Olson, G. A.Rochau, L. J.Suter. Time-resolved characterization of Hohlraum radiation temperature via interferometer measurement of quartz shock velocity. Rev. Sci. Instrum., 77, 10E531(2006).

    [31] J.Meyer-Ter-Vehn, R.Ramis, R.Schmalz. MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics. Comput. Phys. Comm., 49, 475(1988).

    [32] S.Dong, X.Duan, S.Jiang, Y.Li, H.Liu, W.Liu, L.Sun, P.Wang, Z.Wang, W.Yang, Q.Ye, L.Yi, H.Zhang. Laser-driven shock compression of gold foam in the terapascal pressure range. Phys. Plasmas, 25, 062707(2018).

    [33] Y.Ding, X.Duan, S.Jiang, H.Liu, Y.Liu, L.Sun, F.Wang, Z.Wang, J.Yang, W.Yang, Q.Ye, C.Zhang, H.Zhang. Study of M-band X-ray preheating effect on shock propagation via streaked optical pyrometer system at SG-III prototype lasers. Phys. Plasmas, 26, 012708(2019).

    [34] X.Duan, Z.Guan, S.Jiang, Y.Li, H.Liu, X.Peng, L.Sun, Z.Wang, J.Yang, W.Yang, Q.Ye, C.Zhang, H.Zhang. Transparency measurement of lithium fluoride under laser-driven accelerating shock loading. J. Appl. Phys., 128, 015902(2020).

    [35] X.Duan, S.Jiang, L.Li, Y.Li, H.Liu, Y.Liu, L.Sun, P.Wang, Z.Wang, W.Yang, C.Zhang, H.Zhang. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF. Matter Radiat. Extremes, 6, 035902(2021).

    Zhiyu Zhang, Yang Zhao, Xiaoying Han, Liling Li, Bo Qing, Lifei Hou, Yulong Li, YuXue Zhang, Huan Zhang, Xiangming Liu, Bo Deng, Gang Xiong, Min Lv, Tuo Zhu, Chengwu Huang, Tianming Song, Yan Zhao, Yingjie Li, Lu Zhang, Xufei Xie, Jiyan Zhang, Jiamin Yang. Self-consistent and precise measurement of time-dependent radiative albedo of gold based on specially symmetrical triple-cavity Hohlraum[J]. Matter and Radiation at Extremes, 2024, 9(3): 037601
    Download Citation