• Chinese Optics Letters
  • Vol. 22, Issue 11, 110501 (2024)
Yilin Hua1, Yaodong Chen1,2, Weijia Meng1,2, Ke Cheng1,2..., Haitao Luan1,*, Min Gu1,** and Xinyuan Fang1,***|Show fewer author(s)
Author Affiliations
  • 1Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/COL202422.110501 Cite this Article Set citation alerts
    Yilin Hua, Yaodong Chen, Weijia Meng, Ke Cheng, Haitao Luan, Min Gu, Xinyuan Fang, "Visualized quantum 3D orbital-angular-momentum holography," Chin. Opt. Lett. 22, 110501 (2024) Copy Citation Text show less
    References

    [1] J. T. Sheridan, R. K. Kostuk, A. F. Gil et al. Roadmap on holography. J. Opt., 22, 123002(2020).

    [2] K. Buse, A. Adibi, D. Psaltis. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature, 393, 665(1998).

    [3] X. Lin, J. Liu, J. Hao et al. Collinear holographic data storage technologies. Opto-Electron. Adv., 3, 190004(2020).

    [4] N. Yoneda, Y. Saita, T. Nomura. Computer-generated-hologram-based holographic data storage using common-path off-axis digital holography. Opt. Lett., 45, 2796(2020).

    [5] P. Marquet, C. Depeursinge, P. J. Magistretti. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics, 1, 020901(2014).

    [6] C. Martin, L. E. Altman, S. Rawat et al. In-line holographic microscopy with model-based analysis. Nat. Rev. Methods Primers, 2, 83(2022).

    [7] J. Rosen, G. Brooker. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photonics, 2, 190(2008).

    [8] J. Geng. Three-dimensional display technologies. Adv. Opt. Photonics, 5, 456(2013).

    [9] P.-A. Blanche. Holography, and the future of 3D display. Light Adv. Manuf., 2, 28(2021).

    [10] L. Shi, B. Li, C. Kim et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature, 591, 234(2021).

    [11] Q. Geng, D. Wang, P. Chen et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun., 10, 2179(2019).

    [12] W. Ouyang, X. Xu, W. Lu et al. Ultrafast 3D nanofabrication via digital holography. Nat. Commun., 14, 1716(2023).

    [13] L. Wang, W. Gong, X.-W. Cao et al. Holographic laser fabrication of 3D artificial compound µ-eyes. Light Adv. Manuf., 4, 26(2023).

    [14] P. Georgi, Q. S. Wei, B. Sain et al. Optical secret sharing with cascaded metasurface holography. Sci. Adv., 7, eabf9718(2021).

    [15] J. Li, S. Kamin, G. Zheng et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv., 4, eaar6768(2018).

    [16] D. Pi, J. Liu, Y. Wang. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light Sci. Appl., 11, 231(2022).

    [17] T. Shimobaba, D. Blinder, T. Birnbaum et al. Deep-learning computational holography: a review. Front. Photonics, 3, 854391(2022).

    [18] P. Chen, C. Wang, D. Wei et al. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light Sci. Appl., 10, 146(2021).

    [19] P. Chen, X. Xu, T. Wang et al. Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing. Nat. Commun., 14, 5523(2023).

    [20] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko et al. Quantum holography. Opt. Express, 9, 498(2001).

    [21] R. Chrapkiewicz, M. Jachura, K. Banaszek et al. Hologram of a single photon. Nat. Photonics, 10, 576(2016).

    [22] F. Devaux, A. Mosset, F. Bassignot et al. Quantum holography with biphotons of high Schmidt number. Phys. Rev. A, 99, 033854(2019).

    [23] H. Defienne, B. Ndagano, A. Lyons et al. Polarization entanglement-enabled quantum holography. Nat. Phys., 17, 591(2021).

    [24] G. Thekkadath, D. England, F. Bouchard et al. Intensity interferometry for holography with quantum and classical light. Sci. Adv., 9, eadh1439(2023).

    [25] D. Zia, N. Dehghan, A. D’Errico et al. Interferometric imaging of amplitude and phase of spatial biphoton states. Nat. Photonics, 17, 1009(2023).

    [26] E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni et al. Experimental realization of quantum illumination. Phys. Rev. Lett., 110, 153603(2013).

    [27] T. Gregory, P. A. Moreau, E. Toninelli et al. Imaging through noise with quantum illumination. Sci. Adv., 6, eaay2652(2020).

    [28] X. Y. Zou, L. J. Wang, L. Mandel. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett., 67, 318(1991).

    [29] G. B. Lemos, V. Borish, G. D. Cole et al. Quantum imaging with undetected photons. Nature, 512, 409(2014).

    [30] S. Töpfer, M. Gilaberte Basset, J. Fuenzalida et al. Quantum holography with undetected light. Sci. Adv., 8, eabl4301(2022).

    [31] I. Yamaguchi, T. Zhang. Phase-shifting digital holography. Opt. Lett., 22, 1268(1997).

    [32] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102(2019).

    [33] H. Ren, X. Fang, J. Jang et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948(2020).

    [34] X. Fang, H. Yang, W. Yao et al. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv. Photonics, 3, 015001(2021).

    [35] X. Fang, H. Wang, H. Yang et al. Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal. Phys. Rev. A, 102, 043506(2020).

    [36] L.-J. Kong, Y. Sun, F. Zhang et al. High-dimensional entanglement-enabled holography. Phys. Rev. Lett., 130, 053602(2023).

    [37] D. E. Smalley, E. Nygaard, K. Squire et al. A photophoretic-trap volumetric display. Nature, 553, 486(2018).

    [38] J.-H. Park, B. Lee. Holographic techniques for augmented reality and virtual reality near-eye displays. Light Adv. Manuf., 3, 9(2022).

    [39] F. M. Miatto, A. M. Yao, S. M. Barnett. Full characterization of the quantum spiral bandwidth of entangled biphotons. Phys. Rev. A, 83, 033816(2011).

    [40] J. P. Torres, A. Alexandrescu, L. Torner. Quantum spiral bandwidth of entangled two-photon states. Phys. Rev. A, 68, 050301(2003).

    [41] J. Romero, D. Giovannini, S. Franke-Arnold et al. Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement. Phys. Rev. A, 86, 012334(2012).

    [42] A. C. Dada, J. Leach, G. S. Buller et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys., 7, 677(2011).

    [43] A. Mair, A. Vaziri, G. Weihs et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313(2001).

    [44] W. Meng, Y. Hua, K. Cheng et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron. Sci., 1, 220004(2022).

    [45] G. Makey, Ö. Yavuz, D. K. Kesim et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat. Photonics, 13, 251(2019).

    [46] M. Krenn, R. Fickler, M. Fink et al. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 16, 113028(2014).

    [47] M. Krenn, J. Handsteiner, M. Fink et al. Twisted light transmission over 143 km. Proc. Natl. Acad. Sci., 113, 13648(2016).

    [48] X. Fang, H. Ren, K. Li et al. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics. Adv. Opt. Photonics, 13, 772(2021).

    [49] Y. Dong, G. Pan, M. Xun et al. Nanoprinted diffractive layer integrated vertical-cavity surface-emitting vortex lasers with scalable topological charge. Nano Lett., 23, 9096(2023).

    [50] B. Li, H. Su, W. Meng et al. Orbital angular momentum holographic multicasting for switchable and secure wireless optical communication links. Opt. Express, 31, 23106(2023).

    [51] W. Meng, B. Li, H. Luan et al. Orbital angular momentum neural communications for 1-to-40 multicasting with 16-ary shift keying. ACS Photonics, 10, 2799(2023).

    Yilin Hua, Yaodong Chen, Weijia Meng, Ke Cheng, Haitao Luan, Min Gu, Xinyuan Fang, "Visualized quantum 3D orbital-angular-momentum holography," Chin. Opt. Lett. 22, 110501 (2024)
    Download Citation