[1] MOMOSE A, TAKEDA T, ITAI Y, et al. Phase-contrast X-ray computed tomography for observing biological soft tissues[J]. Nature Medicine, 1996, 2: 473-475.
[2] DAVIS T J, GAO D, GUREYEV T E, et al. Phase-contrast imaging of weakly absorbing materials using hard X-rays[J]. Nature, 1995, 373: 595-598.
[3] WILKINS S W, GUREYEV T E, GAO D, et al. Phase-contrast imaging using polychromatic hard X-rays[J]. Nature, 1996, 384: 335-338 .
[4] OLIVO A, SPELLER R. A coded-aperture technique allowing X-ray phase contrast imaging with conventional sources[J]. Applied Physics Letters, 2007, 91: 074106.
[5] DAVID C, NOHAMMER B, SOLAK H H. Differential X-ray phase contrast imaging using shearing interferometer[J]. Applied Physics Letters, 2002, 81: 3287-3289.
[6] MOMOSE A, KAWAMOTO S, KOYAMA I, et al. Demonstration of X-Ray talbot interferometry[J]. Japanese Journal of Applied Physics, 2003, 42: 866-868.
[7] PFEIFFER F, WEITKAMP T, BUNK O I, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2: 258-261.
[8] ZAMBELLI J, BEVINS N, QI Z I, et al. Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT[J]. Medical Physics, 2010, 37: 2473-2479.
[9] ZHU P, ZHANG K, WANG Z I, et al. Low-dose, simple, and fast grating-based X-ray phase-contrast imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 13576-13581.
[10] DU Y, LIU X, LEI Y, et al. Non-absorption grating approach for X-ray phase contrast imaging[J]. Optics Express, 2011, 19: 22669-22674.
[11] MARCO S, ZHENTIAN W, THOMAS T I, et al. The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography[J]. Investigative Radiology, 2011, 46(12): 801-806.
[12] SUSANNE G, MARIAN W, JULIA H I, et al. Evaluation of phase-contrast CT of breast tissue at conventional X-ray sources-presentation of selected findings[J]. Zeitschrift für Medizinische Physik, 2013, 10451: 1-10.
[13] ATSUSHI M, WATARU Y, KAZUHIRO K I, et al. X-ray phase imaging: from synchrotron to hospital[J]. Philosophical Transactions of the Royal Society A, 2014, 372: 1-7.
[14] HUANG Jian-heng, LEI Yao-hu, YU Yang, et al. Quantitative calculation of fringe visibility in bismuth grating-based X-ray phase-contrast imaging[J]. Acta Optica Sinica, 2017, 37(4): 0434001.
[16] ZHAO Zhi-gang, WANG Ru, LEI Yao-hu, et al. Fine adjustable non-glued fiber optic taper array coupled digital X-ray detector[J]. Acta Photonica Sinica, 2015, 44(5): 0504001.
[17] DONATH T, CHABIOR M, PFEIFFER F I, et al. Inverse geometry for grating-based x-ray phase-contrast imaging[J]. Journal of Applied Physics, 2009, 106: 054703.
[18] MOMOSE A, KUWABARA H, YASHIRO W. X-ray phase imaging using lau effect[J]. Applied Physics Express, 2011, 4: 066603.
[19] SHIMURA T, MORIMOTO N, FUJINO S, et al. Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferome ter with multiline embedded x-ray targets[J]. Optics Letters, 2013, 38(2): 157-159.
[20] NAOKI M, SHO F, KENICHI O, et al. X-ray phase contrast imaging by compact Talbot-Lau interferometer with a single transmission grating[J]. Optics Letters, 2014, 39(15): 4297-4300.
[21] MOMOSE A, YASHIRO W, KUWABARA H, et al. Grating-based X-ray phase imaging using multiline X-ray source[J]. Japanese Journal of Applied Physics, 2009, 48: 076512.