• Chinese Journal of Lasers
  • Vol. 38, Issue 4, 404002 (2011)
Gao Hongfang1、2、*, Ren Yuxuan1, Liu Weiwei1, and Li Yinmei1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/cjl201138.0404002 Cite this Article Set citation alerts
    Gao Hongfang, Ren Yuxuan, Liu Weiwei, Li Yinmei. Rotation Dynamics of Yeast Cell in Vortex Optical Tweezers[J]. Chinese Journal of Lasers, 2011, 38(4): 404002 Copy Citation Text show less

    Abstract

    Vortex optical trap is generated by projecting computer-generated phase patterns to liquid crystal spatial light modulator. Because vortex beam itself owns orbital angular momentum, it can be utilized to trap and rotate yeast cell. The angular rotation rate of yeast cell is measured by Fourier transforming of rotation time-sequencial signal. Besides, how laser power, topological charge and height of the vortex trap from bottom affect the angular rate of rotation is discussed in detail. The experimental results indicate that the rotation rate is proportional to laser power, but inversely proportional to the square of the topological charge. The rotation rate reaches maximum when the height of trap is about 14 μm. The sign of topological charge determines the direction of rotation of yeast cell. When the sign of topological charge is positive, the yeast cell rotates counter-clockwise, and it rotates clockwise when the sign is negative. The results may find their potential applications in the measurement of the torque of bacterial flagella motor.
    Gao Hongfang, Ren Yuxuan, Liu Weiwei, Li Yinmei. Rotation Dynamics of Yeast Cell in Vortex Optical Tweezers[J]. Chinese Journal of Lasers, 2011, 38(4): 404002
    Download Citation