• Frontiers of Optoelectronics
  • Vol. 7, Issue 4, 475 (2014)
Kui ZHANG1, Yongyou GENG1, Yang WANG1, and Yiqun WU1、2、*
Author Affiliations
  • 1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Harbin 150080, China
  • show less
    DOI: 10.1007/s12200-014-0418-2 Cite this Article
    Kui ZHANG, Yongyou GENG, Yang WANG, Yiqun WU. Progress of super-resolution near-field structure and its application in optical data storage[J]. Frontiers of Optoelectronics, 2014, 7(4): 475 Copy Citation Text show less
    References

    [1] Gan F X. Digital Optical Disc Storage Technology. Beijing: Science Press, 1998, 1–10

    [2] Hosaka S, Shintani T, Miyamoto M, Hirotsune A, Terao M, Yoshida M, Fujita K, Kammer S. Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode. Japanese Journal of Applied Physics, 1996, 35(1B): 443–447

    [3] Terris B D, Mamin H J, Rugar D, Studenmund W R, Kino G S. Near-field optical data storage using a solid immersion lens. Applied Physics Letters, 1994, 65(4): 388–390

    [4] Tominaga J, Nakano T, Atoda N. An approach for recording and readout beyond the diffraction limit with an Sb thin film. Applied Physics Letters, 1998, 73(15): 2078–2080

    [5] Yasuda K, Ono M, Aratani K, Fukumoto A, Kaneko M. Premastered optical disk by superresolution. Japanese Journal of Applied Physics, 1993, 32(11B): 5210–5213

    [6] Lu X M, Wu Y Q, Wang Y, Wei J S. Optical characterization of antimony-based bismuth-doped thin films with different annealing temperatures. Chinese Optics Letters, 2011, 9(10): 102101–102104

    [7] Zhang F, Wang Y, Xu W D, Shi H R, Wei J S, Gan F X. Highdensity read-only memory disc with Ag11In12Sb51Te26 superresolution mask layer. Chinese Physics Letters, 2004, 21(10): 1973–1975

    [8] Lee H S, Lee T S, Lee Y, Kim J, Lee S, Huh J Y, Kim D, Cheong B K. Microstructural and optical analysis of superresolution phenomena due to Ge2Sb2Te5 thin films at blue light regime. Applied Physics Letters, 2008, 93(22): 221108

    [9] Assafrao A C, Wachters A J H, Verheijen M, Nugrowati A M, Pereira S F, Urbach H P, Armand M F, Olivier S. Direct measurement of the near-field super resolved focused spot in InSb. Optics Express, 2012, 20(9): 10426–10437

    [10] Fuji H, Tominaga J, Men L, Nakano T, Katayama H, Atoda N. A near-field recording and readout technology using a metallic probe in an optical disk. Japanese Journal of Applied Physics, 2000, 39(2B): 980–981

    [11] Qu Q L, Wang Y, Gan F X. Numerical analysis and comparison of three metal-oxide-type super-resolution near field structures. Chinese Physics Letters, 2006, 23(12): 3363–3365

    [12] Fu Y H, Ho F H, Hsu W C, Tsai S Y, Tsai D P. Nonlinear optical properties of the Au-SiO2 nanocomposite superresolution near-field thin film. Japanese Journal of Applied Physics, 2004, 43(7B): 5020–5023

    [13] Wei J S, Liu J, Xiao M F. Giant optical nonlinearity of silver-doped silicon thin film at low power input: laser triggered cluster resonance. Applied Physics. A, Materials Science & Processing, 2011, 104(4): 1031–1037

    [14] Zhao S L, Geng Y Y, Shi H R. Study on super-resolution readout performance of Si-doped Ag film. Acta Optica Sinica, 2012, 32(6): 0631004

    [15] Fukaya T, Tominaga J, Nakano T, Atoda N. Optical switching property of a light-induced pinhole in antimony thin film. Applied Physics Letters, 1999, 75(20): 3114–3116

    [16] Tsai D P, Lin W C. Probing the near fields of the super-resolution near-field optical structure. Applied Physics Letters, 2000, 77(10): 1413–1415

    [17] Simpson R E, Fons P, Wang X, Kolobov A V, Fukaya T, Tominaga J. Non-melting super-resolution near-field apertures in Sb-Te alloys. Applied Physics Letters, 2010, 97(16): 161906

    [18] Lu X M, Wu Y Q, Wang Y, Wei J S. Super-resolution readout property of bismuth-doped antimony-based thin film as a functional mask for read-only memory. Applied Physics A, Materials Science & Processing, 2012, 108(4): 765–769

    [19] Nakai K, Ohmaki M, Takeshita N, Hyot B, Andre B, Poupinet L. Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material InSb. Japanese Journal of Applied Physics, 2010, 49(8): 08KE01

    [20] Nakai K, Ohmaki M, Takeshita N, Shinoda M, Hwang I, Lee Y, Zhao H, Kim J, Hyot B, Andre B, Poupinet L, Shima T, Nakano T, Tominaga J. First playback of high-definition video contents from super-resolution near-field structure optical disc. Japanese Journal of Applied Physics, 2010, 49(8): 08KE02

    [21] Nakai K, Ohmaki M, Takeshita N, Hyot B, Andre B, Poupinet L, Shima T. Super-resolution optical disc with radial density increased by narrowed track pitch corresponding to diffraction limit. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LB03

    [22] Wei J S. On the dynamic readout characteristic of nonlinear superresolution optical storage. Optics Communications, 2013, 291: 143–149

    [23] Wei J S, Liu J, Jiao X B. Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics. Applied Physics Letters, 2009, 95(24): 241105

    [24] Liu J, Wei J S. Optical nonlinear absorption characteristics of AgInSbTe phase change thin films. Journal of Applied Physics, 2009, 106(8): 083112

    [25] Liu J, Liu S, Wei J S. Origin of the giant optical nonlinearity of Sb2Te3 phase change materials. Applied Physics Letters, 2010, 97(26): 261903

    [26] Liu S,Wei J S, Gan F X. Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films. Journal of Applied Physics, 2011, 110(3): 033503

    [27] Liu S, Wei J S, Gan F X. Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond. Applied Physics Letters, 2012, 100(11): 111903

    [28] Wei J, Liu S, Geng Y, Wang Y, Li X, Wu Y, Dun A. Nano-optical information storage induced by the nonlinear saturable absorption effect. Nanoscale, 2011, 3(8): 3233–3237

    [29] Her Y C, Lan Y C, Hsu W C, Tsai S Y. Recording and readout mechanisms of super-resolution near-field structure disk with a silver oxide mask layer. Applied Physics Letters, 2003, 83(11): 2136–2138

    [30] Li J M, Shi L P, Miao X S, Lim K G, Yang H X, Tan P K, Chong T C. Near-field characteristics and signal enhancement of superresolution near-field structure disk with metal nanoparticles. Japanese Journal of Applied Physics, 2006, 45(2B): 1398–1400

    [31] Chou Y F C. Comparison of surface plasmon resonance effects between solid silver and silver-shell nanoparticles in active layer of AgOx-type super-resolution near-field structure. In: Proceedings of International Conference on Photonics Solutions. 2013, 88831E

    [32] Huang H, Zhang L,Wang Y, Han X D,Wu Y Q, Zhang Z, Gan F X. Locally formation of Ag nanoparticles in chalcogenide phase change thin films induced by nanosecond laser pulses. Materials Chemistry and Physics, 2012, 135(2–3): 467–473

    [33] Lin J C, Huang H, Wang Y, Wu Y Q. FDTD analysis of silvernanoparticle-embedded phase change recording pits. In: Proceedings of SPIE, International Workshop on Information Storage and Ninth International Symposium on Optical Storage. 2012, 878207

    [34] Kikukawa T, Nakano T, Shima T, Tominaga J. Rigid bubble pit formation and huge signal enhancement in super-resolution nearfield structure disk with platinum-oxide layer. Applied Physics Letters, 2002, 81(25): 4697–4699

    [35] Liu Q, Kim J, Fukaya T,Tominaga J. Thermal-induced optical properties of a PdOx mask layer in an optical data storage system with a superresolution near-field structure. Optics Express, 2003, 11(21): 2646–2653

    [36] Liu Q, Tominaga J, Fukaya T. Bubble’s function in the process of readout for PdOx- and PtOx-type super-RENS disk. In: Proceedings of SPIE, BioMEMS and Nanotechnology. 2004, 5275

    [37] Kim J, Hwang I, Yoon D, Park I, Shin D, Kikukawa T, Shima T, Tominaga J. Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers. Applied Physics Letters, 2003, 83(9): 1701–1703

    [38] Shima T, Nakano T, Kim J, Tominaga J. Super-RENS disk for blue laser system retrieving signals from polycarbonate substrate side. Japanese Journal of Applied Physics, 2005, 44(5B): 3631–3633

    [39] Shima T, Nakano T, Tominaga J. Effect of SiO2 addition to PtOx recording layer of super-resolution near-field structure disc. Japanese Journal of Applied Physics, 2007, 46(6B): 3912–3916

    [40] Shima T, Yamakawa Y, Tominaga J. Readout durability improvement of super-resolution near-field structure discs with PtOx-SiO2 recording and GeNy interfacial layers. Japanese Journal of Applied Physics, 2007, 46(7): L135–L137

    [41] Liu Q, Fukaya T, Cao S, Guo C, Zhang Z, Guo Y, Wei J, Tominaga J. Study on readout durability of super-RENS disk. Optics Express, 2008, 16(1): 213–218

    [42] Kuwahara M, Shima T, Fons P, Fukaya T, Tominaga J. On a thermally induced readout mechanism in super-resolution optical disks. Journal of Applied Physics, 2006, 100(4): 043106

    [43] Kim J, Hwang I, Yoon D, Park I, Shin D, Kuwahara M, Tominaga J. Super-resolution near-field structure with alternative recording and mask materials. Japanese Journal of Applied Physics, 2003, 42(2B): 1014–1017

    [44] Lin W C, Kao T S, Chang H H, Lin Y H, Fu Y H, Wu C T, Chen K H, Tsai D P. Study of a super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2. Japanese Journal of Applied Physics, 2003, 42(2B): 1029–1030

    [45] Mori G, Yamamoto M, Tajima H, Takamori N, Takahashi A. Energy-gap-induced super-resolution (EG-SR) optical disc using ZnO interference film. Japanese Journal of Applied Physics, 2005, 44(5B): 3627–3630

    Kui ZHANG, Yongyou GENG, Yang WANG, Yiqun WU. Progress of super-resolution near-field structure and its application in optical data storage[J]. Frontiers of Optoelectronics, 2014, 7(4): 475
    Download Citation