• Acta Photonica Sinica
  • Vol. 51, Issue 8, 0851513 (2022)
Xue CAO1、2、3、4, Feng LI1、*, Hualong ZHAO1, Yishan WANG1、*, Wei ZHOU4, and Deyuan SHEN4
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China
  • 2Shaanxi Provincial Key Laboratory of Information Photonics Technology,School of Electronic Science and Engineering,Xi'an Jiaotong University,Xi'an 710049,China
  • 3University of Chinese Academy of Sciences,Beijing 100049,China
  • 4Jiangsu Key Laboratory of Advanced Laser Materials and Devices,College of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou,Jiangsu 221116,China
  • show less
    DOI: 10.3788/gzxb20225108.0851513 Cite this Article
    Xue CAO, Feng LI, Hualong ZHAO, Yishan WANG, Wei ZHOU, Deyuan SHEN. High Power Single Crystal Fiber Ultrashort Pulse Amplification Technology(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851513 Copy Citation Text show less
    References

    [1] M HENTSCHEL, R KIENBERGER, C SPIELMANN et al. Attosecond metrology. Nature, 414, 509-513(2001).

    [2] C GOHLE, T UDEM, M HERRMANN et al. A frequency comb in the extreme ultraviolet. Nature, 436, 234-237(2005).

    [3] J MIAO, T ISHIKAWA, I K ROBINSON et al. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science, 348, 530-535(2015).

    [4] G DUMITRU, V ROMANO, H P WEBER et al. Femtosecond ablation of ultrahard materials. Applied Physics A, 74, 729-739(2002).

    [5] A H A LUTEY, L GEMINI, L ROMOLI et al. Towards laser-textured antibacterial surfaces. Scientific Reports, 8, 10112(2018).

    [6] A Y VOROBYEV, C GUO. Direct femtosecond laser surface nano/microstructuring and its applications. Laser & Photonics Reviews, 7, 385-407(2013).

    [7] P RUSSBUELDT, T MANS, J WEITENBERG et al. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Optics Letters, 35, 4169-4171(2010).

    [8] F SALTARELLI, I GRAUMANN, L LANG et al. 350 W average-power SESAM-mode locked ultrafast thin-disk laser(2019).

    [9] H FATTAHI, A ALISMAIL, H WANG et al. High-power, 1 ps, all-Yb:YAG thin-disk regenerative amplifier. Optics Letters, 41, 1126-1129(2016).

    [10] Feng LI. Chirped pulse amplification and transmission technology of high energy femtosecond fiber for industrial Processing applications(2018).

    [11] D SANGLA, I MARTIAL, N AUBRY et al. High power laser operation with crystal fibers. Applied Physics B, 97, 263-273(2009).

    [12] Xiaodong XU. Single crystal fiber-material of choice for high power lasers. Journal of Artificial Crystal, 49, 1952(2020).

    [13] T WANG, J ZHANG, N ZHANG et al. Single crystal fibers: diversified functional crystal material. Advanced Fiber Materials, 1, 163-187(2019).

    [14] F LESPARRE, J T GOMES, X DÊLEN et al. Yb: YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique. Optics Letters, 41, 1628-1631(2016).

    [15] Y H SHEN. Sapphire fiber thermometer ranging from the room temperature to 1 800 ℃. Acta Optica Sinica, 20, 83-87(2000).

    [16] Linhua YE, Xiaofen ZHOU, Li SONG et al. Preparation and properties of Pr3+, Ce3+: YAG fiber for LED white light source. Acta Photonica Sinica, 38, 2059-2062(2009).

    [17] Yalan WANG, Qing WANG. Research progress in single-crystal fiber amplifiers. Laser & Optoelectronics Progress, 55, 100006(2018).

    [18] J CZOCHRALSKI. Ein neues verfahren zur messung der kristallisationsgeschwindigkeit der metalle. Zeitschrift für physikalische Chemie, 92, 219-221(1918).

    [19] M FEJER, R BYER, R FEIGELSON et al. Growth and characterization of single crystal refractory oxide fibers, 320, 50-55(1982).

    [20] M ANDREETA, A C HERNANDES. Laser-heated pedestal growth of oxide fibers. Springer Handbook of Crystal Growth, 393-432(2010).

    [21] D H YOON, I YONENAGA, T FUKUDA et al. Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method. Journal of Crystal Growth, 142, 339-343(1994).

    [22] T FUKUDA, V I CHANI. CrystalsShaped: growth by micro-pulling-down technique. Springer Science & Business Media(2007).

    [23] T WANG, J ZHANG, N ZHANG et al. The characteristics of high-quality Yb:YAG single crystal fibers grown by a LHPG method and the effects of their discoloration. RSC advances, 9, 22567-22575(2019).

    [24] N SOLEIMANI, B PONTING, E GEBREMICHAEL et al. Coilable single crystals fibers of doped-YAG for high power laser applications. Journal of Crystal Growth, 393, 18-22(2014).

    [25] G MAXWELL, N SOLEIMANI, B PONTING et al. Coilable single crystal fibers of doped-YAG for high power laser applications, 8733, 87330T(2013).

    [26] C D NIE, S BERA, J A HARRINGTON. Growth of single-crystal YAG fiber optics. Optics Express, 24, 15522-15527(2016).

    [27] M DUBINSKII, J ZHANG, V FROMZEL et al. Low-loss 'crystalline-core/crystalline-clad' (C4) fibers for highly power scalable high efficiency fiber lasers. Optics Express, 26, 5092-5101(2018).

    [28] W KIM, B SHAW, S BAYYA et al. Cladded single crystal fibers for high power fiber lasers, 9958, 117-124(2016).

    [29] L B SHAW, S BAYYA, W KIM et al. Fabrication of cladded single crystal fibers for all-crystalline fiber lasers, SoW2H. 3(2018).

    [30] S VERONESI, Y ZHANG, M TONELLI et al. Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD. Optics Communications, 285, 315-321(2012).

    [31] K LEBBOU, D PERRODIN, V I CHANI et al. Fiber single-crystal growth from the melt for optical applications. Journal of the American Ceramic Society, 89, 75-80(2006).

    [32] K PAUWELS, C DUJARDIN, S GUNDACKER et al. Single crystalline LuAG fibers for homogeneous dual-readout calorimeters. Journal of Instrumentation, 8, P09019(2013).

    [33] X XU, K LEBBOU, F MORETTI et al. Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics. Acta Materialia, 67, 232-238(2014).

    [34] A NOVOSELOV, Y KAGAMITANI, T KASAMOTO et al. Crystal growth and characterization of Yb3+-doped Gd3Ga5O12. Materials Research Bulletin, 42, 27-32(2007).

    [35] J LEE, A YOSHIKAWA, H KAIDEN et al. Microstructure of Y2O3 doped Al2O3/ZrO2 eutectic fibers grown by the micro-pulling-down method. Journal of Crystal Growth, 231, 179-185(2001).

    [36] A FUKABORI, V CHANI, K KAMADA et al. Growth of Yb-doped Y2O3, Sc2O3, and Lu2O3 single crystals by the micro-pulling-down technique and their optical and scintillation characterization. Journal of Crystal Growth, 352, 124-128(2012).

    [37] A YOSHIKAWA, K HASEGAWA, J LEE et al. Phase identification of Al2O3/RE3Al5O12 and Al2O3/REAlO3 (RE= Sm-Lu, Y) eutectics. Journal of Crystal Growth, 218, 67-73(2000).

    [38] A SOTTILE, Z ZHANG, S VERONESI et al. Visible laser operation in a Pr3+: LiLuF4 monocrystalline fiber grown by the micro-pulling-down method. Optical Materials Express, 6, 1964-1972(2016).

    [39] A SANTO, I RANIERI, G BRITO et al. Growth of LiYF4 single-crystalline fibres by micro-pulling-down technique. Journal of crystal growth, 275, 528-533(2005).

    [40] D TOTSKA, T YANAGIDA, Y FUJIMOTO et al. Study on scintillation properties of rare earth (Pr, Nd and Tm) activated Lu2SiO5, 1292-1295(2010).

    [41] Y FUJIMOTO, T YANAGIDA, S WAKAHARA et al. Growth and scintillation properties of Ce3+-doped (Y1‐xGdx) AlO3 crystals. Physica Status Solidi C, 9, 2259-2262(2012).

    [42] H FARHI, S BELKAHLA, K LEBBOU et al. BGO fibers growth by μ-pulling down technique and study of light propagation. Physics Procedia, 2, 819-825(2009).

    [43] S INABA, T MACHIDA, H ASAKAWA et al. Effects of temperature gradient on growth of SrB4O7 crystals by the micro-pulling-down method. Transactions of the Materials Research Society of Japan, 42, 123-126(2017).

    [44] K KAMADA, Y TAKIDA, H MINAMIDE et al. Growth of N-benzyl-2-methyl-4-nitroaniline (BNA) single crystal fibers by micro-pulling down method. Journal of Crystal Growth, 452, 162-165(2016).

    [45] F D LELII, S JUN, F PIRZIO et al. Laser investigation of Yb: YLF crystals fabricated with the micro-pulling-down technique. Applied Optics, 57, 2223-2226(2018).

    [46] S VERONESI, Y ZHANG, M TONELLI et al. Efficient laser emission in Ho 3+:LiLuF4 grown by micro-Pulling Down method. Optics Express, 20, 18723-18731(2012).

    [47] F PIRZIO, S JUN, S TACCHINI et al. Multi-watt amplification in a birefringent Yb:LiLuF4 single crystal fiber grown by micro-pulling-down. Optics Letters, 44, 4095-4098(2019).

    [48] Dongsheng YUAN, Zhitai JIA, Jun SHU et al. Development of micro-pulling-down equipment for crystal fiber growth and YAG single crystal growth. Journal of Synthetic Crystals, 43, 1317-1322(2014).

    [49] J XU, Q SONG, J LIU et al. The micro-pulling-down growth of Eu3+-doped Y3Al5O12 and Y3ScAl4O12 crystals for red luminescence. Optical Materials, 109, 110388(2020).

    [50] Y ZHAO, L WANG, W CHEN et al. 35 W continuous-wave Ho: YAG single-crystal fiber laser. High Power Laser Science and Engineering, 8, 02000e25(2020).

    [51] V N KURLOV, D O STRYULOV, I A SHIKUNOVA. Growth of sapphire and oxide eutectic fibers by the EFG technique, 673, 012017(2016).

    [52] X TIAN, Z WANG, M DING et al. Recent progress in cerium-based nanomaterials for electrochemical biosensors. International Journal of Electrochemical Science, 15, 330-310(2020).

    [53] K Y HUANG, K Y HSU, D Y JHENG et al. Low-loss propagation in Cr4+: YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique. Optics Express, 16, 12264-12271(2008).

    [54] C C LAI, W T GAO, D H NGUYEN et al. Toward single-mode active crystal fibers for next-generation high-power fiber devices. ACS Applied Materials & Interfaces, 6, 13928-13936(2014).

    [55] J D MYERS, W KIM, L B SHAW et al. Development of thin film claddings for single crystal optical fiber(2018).

    [56] M DE VIDO, A WOJTUSIAK, K ERTEL. High resolution absorption measurements at the zero-phonon line of Yb: YAG at low temperatures(2020).

    [57] J KOERNER, C VORHOLT, H LIEBETRAU et al. Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 ℃ and 200 ℃ and predictions on their influence on laser performance. Journal of the Optical Society of America B, 29, 2493-2502(2012).

    [58] Y ZAOUTER, I MARTIAL, N AUBRY et al. Direct amplification of ultrashort pulses in μ-pulling-down Yb: YAG single crystal fibers. Optics Ltters, 36, 748-750(2011).

    [59] X DÉLEN, S PIEHLER, J DIDIERJEAN et al. 250 W single-crystal fiber Yb: YAG laser. Optics Letters, 37, 2898-2900(2012).

    [60] X DÉLEN, Y ZAOUTER, I MARTIAL et al. Yb: YAG single crystal fiber power amplifier for femtosecond sources. Optics Letters, 38, 109-111(2013).

    [61] M KIENEL, M MÜLLER, S DEMMLER et al. Coherent beam combination of Yb: YAG single-crystal rod amplifiers. Optics Letters, 39, 3278-3281(2014).

    [62] F LESPARRE, J T GOMES, X DÉLEN et al. High-power Yb: YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization. Optics Letters, 40, 2517-2520(2015).

    [63] V MARKOVIC, A ROHRBACHER, P HOFMANN et al. 160 W 800 fs Yb: YAG single crystal fiber amplifier without CPA. Optics Epress, 23, 25883-25888(2015).

    [64] Y XU, Z PENG, Y SHI et al. Compact 80 W, 1 MHz femtosecond chirped pulse amplification laser system based on a Yb-doped fiber and a Yb: YAG thin Rod. IEEE Photonics Journal, 14, 1-6(2022).

    [65] S WANG, Z CONG, J LIU et al. High-efficiency 940-and 969-nm brightness-maintaining wavelength-multiplexed LD-pumped 240-W thin-rod Yb: YAG amplifier. Optics Letters, 47, 2113-2116(2022).

    [66] F LI, Z YANG, Z LV et al. Hundred micro-joules level high power chirped pulse amplification of femtosecond laser based on single crystal fiber. IEEE Photonics Journal, 9, 1-7(2017).

    [67] F LI, N WANG, Z YANG et al. High-energy femtosecond laser system based on a fiber laser seeder, Yb: YAG single crystal fiber and chirped volume Bragg grating. Laser Physics Letters, 17, 065103(2020).

    [68] N N WANG, F LI, X L WANG et al. Development of a 67.8 W, 2.5 ps ultrafast chirped-pulse amplification system based on single-crystal fiber amplifiers. Applied Optics, 59, 8106-8110(2020).

    [69] F LI, Z YANG, Z LV et al. Hybrid CPA system comprised by fiber-silicate glass fiber-single crystal fiber with femtosecond laser power more than 90 W at 1 MHz. Optics & Laser Technology, 129, 106291(2020).

    Xue CAO, Feng LI, Hualong ZHAO, Yishan WANG, Wei ZHOU, Deyuan SHEN. High Power Single Crystal Fiber Ultrashort Pulse Amplification Technology(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851513
    Download Citation