• Acta Photonica Sinica
  • Vol. 50, Issue 12, 1222002 (2021)
Fei WEI1、2、3、4、*, Xuanyi ZHANG1、2、3、4, Songwu PENG1、3、4, Wen LI1, Chun LI5, Shuang LENG1、3、4, and Pengyuan FENG1、3、4
Author Affiliations
  • 1National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China
  • 4Key Laboratory of Science and Technology on Space Environment Situational Awareness, CAS, Beijing 100190, China
  • 5Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/gzxb20215012.1222002 Cite this Article
    Fei WEI, Xuanyi ZHANG, Songwu PENG, Wen LI, Chun LI, Shuang LENG, Pengyuan FENG. Solar FUV/UV Spectrometer Onboard High Altitude Balloon Flight in the Near Space[J]. Acta Photonica Sinica, 2021, 50(12): 1222002 Copy Citation Text show less
    The optics designed for the solar FUV-UV spectrometer
    Fig. 1. The optics designed for the solar FUV-UV spectrometer
    The spectrum estimated by the physical models
    Fig. 2. The spectrum estimated by the physical models
    The simulation model of the optics by ZEMAX
    Fig. 3. The simulation model of the optics by ZEMAX
    A plane detector is placed for the simulation purpose, the detector in this figure shows 1/6 of the sensors for the full wavelength range
    Fig. 4. A plane detector is placed for the simulation purpose, the detector in this figure shows 1/6 of the sensors for the full wavelength range
    Spot diagram
    Fig. 5. Spot diagram
    The wave-front of the optics without spectrum focusing mirror
    Fig. 6. The wave-front of the optics without spectrum focusing mirror
    The wave-front of the optics with spectrum focusing mirror
    Fig. 7. The wave-front of the optics with spectrum focusing mirror
    The simulation of stray-light suppress and the trap for 0-order spot
    Fig. 8. The simulation of stray-light suppress and the trap for 0-order spot
    The higher-order diffraction of shorter-wavelength spectrum overlapped with the first-order of the longer-wavelength spectrum
    Fig. 9. The higher-order diffraction of shorter-wavelength spectrum overlapped with the first-order of the longer-wavelength spectrum
    The transmission efficiency of a band-pass wavelength filter provided
    Fig. 10. The transmission efficiency of a band-pass wavelength filter provided
    Instrument/SatelliteLuanche dateWavelength/nmWavelength resolution/nmWeight/kg
    V2Rocket-SUVS1946300~//
    SOLSPEC1983160~36518
    UARS-SUSIM1991.9120~4000.1~5135
    SORCE:SOLSTICEII2003.1115~3200.1~136
    Table 1. The specifications of the solar FUV-UV spectrometers flight before
    ParameterValue
    Wavelength band/nm170~400
    FUV/UV flux20~2×105Photons/(pixel·s-1
    Field of view±1°
    Spectral resolution/nm0.1
    Cadence/s1
    Table 2. The performance requirements for the solar FUV-UV spectrometer onboard a near-space balloon
    ParameterValue
    Slit60 um×10 mm
    Incidence optic length381.50 mm
    Concave roland grating

    Aperture: 50.8 mm×50.8 mm

    Concave radius: R498.1 mm

    Line density: 2 700 lp/mm

    Reflecting mirror

    Aperture: 160 mm×60 mm

    Concave radius: R650 mm

    DetectorsCCD for 170~250 nm

    Number of pixels: 1×2 048

    Pixel size: 500 μm×14 μm

    Full-well capacity: 200ke-

    Noise rate: <20e-/pixel/s (-40℃)

    Power for cooler: 6W (Maxim)

    CMOS for 250~400 nm

    Number of pixels: 1×2 048

    Pixel size: 200 μm×14 μm

    Full-well capacity: 80 ke-

    Noise rate: <80e-/pixel/s (+25℃)

    Table 3. The parameters designed for the optic components
    Fei WEI, Xuanyi ZHANG, Songwu PENG, Wen LI, Chun LI, Shuang LENG, Pengyuan FENG. Solar FUV/UV Spectrometer Onboard High Altitude Balloon Flight in the Near Space[J]. Acta Photonica Sinica, 2021, 50(12): 1222002
    Download Citation