• Progress in Geography
  • Vol. 39, Issue 3, 519 (2020)
Jiazhi QIE1、1、2、2 and Yong ZHANG1、1、*
Author Affiliations
  • 1.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 1.中国科学院地理科学与资源研究所,中国科学院陆地表层格局与模拟重点实验室,北京 100101
  • 2.University of Chinese Academy of Sciences, Beijing 100049, China
  • 2.中国科学院大学,北京 100049
  • show less
    DOI: 10.18306/dlkxjz.2020.03.015 Cite this Article
    Jiazhi QIE, Yong ZHANG. Advances in flash flood research based on dendrogeomorphology[J]. Progress in Geography, 2020, 39(3): 519 Copy Citation Text show less
    References

    [1] Collier C G. Flash flood forecasting: What are the limits of predictability?[J]. Quarterly Journal of the Royal Meteorological Society, 133, 3-23(2007).

    [2] Georgakakos K P. On the design of national, real-time warning systems with capability for site-specific, flash-flood forecasts[J]. Bulletin of the American Meteorological Society, 67, 1233-1239(1986).

    [8] Li Z, Yang D W, Hong Y et al. Characterizing spatiotemporal variations of hourly rainfall by gauge and radar in the mountainous three gorges region[J]. Journal of Applied Meteorology and Climatology, 53, 873-889(2014).

    [9] Liu Y S, Yuan X M, Guo L et al. Driving force analysis of the temporal and spatial distribution of flash floods in Sichuan Province[J]. Sustainability, 9, 1527(2017).

    [15] Chen H, Yang D W, Hong Y et al. Hydrological data assimilation with the ensemble square-root-filter: Use of streamflow observations to update model states for real-time flash flood forecasting[J]. Advances in Water Resources, 59, 209-220(2013).

    [16] Huang W, Cao Z X, Qi W J et al. Full 2D hydrodynamic modelling of rainfall-induced flash floods[J]. Journal of Mountain Science, 12, 1203-1218(2015).

    [18] George S S, Nielsen E. Palaeoflood records for the Red River, Manitoba, Canada, derived from anatomical tree-ring signatures[J]. The Holocene, 13, 547-555(2003).

    [19] Ballesteros-Cánovas J A, Rodríguez-Morata C, Garófano-Gómez V et al. Unravelling past flash flood activity in a forested mountain catchment of the Spanish Central System[J]. Journal of Hydrology, 529, 468-479(2014).

    [20] Stoffel M. Dating past geomorphic processes with tangential rows of traumatic resin ducts[J]. Dendrochronologia, 26, 53-60(2008).

    [24] Fritts H C[M]. Tree rings and climate(1976).

    [25] Alestalo J. Dendrochronological interpretation of geomorphic processes[J]. Fennia, 105, 1-139(1971).

    [26] Butler D R. Snow avalanche path terrain and vegetation, Glacier National Park, Montana[J]. Arctic and Alpine Research, 11, 17-32(1979).

    [27] Hupp C R. Dendrogeomorphic evidence of debris flow frequency and magnitude at Mount Shasta, California[J]. Environmental Geology and Water Sciences, 6, 121-128(1984).

    [28] Stoffel M. A review of studies dealing with tree rings and rockfall activity: The role of dendrogeomorphology in natural hazard research[J]. Natural Hazards, 39, 51-70(2006).

    [29] Hardman G. The relationship between tree growth and stream runoff in the Truckee River Basin, California-Nevada[J]. Transactions, American Geophysical Union, 17, 491-493(1936).

    [30] Sigafoos R S. Vegetation in relation to flood frequency near Washington, DC[M]. Washington DC, USA: United States Government Printing Office(1961).

    [31] Sigafoos R S. Botanical evidence of floods and floodplain deposition[M]. Washington D C, USA: United States Government Printing Office(1964).

    [32] Baker V R. Palaeoflood hydrology and extraordinary flood events[J]. Journal of Hydrology, 96, 79-99(1987).

    [33] Bégin Y. Tree-ring dating of extreme lake levels at the subarctic-boreal interface[J]. Quaternary Research, 55, 133-139(2001).

    [34] Zielonka T, Holeksa J, Ciapala S. A reconstruction of flood events using scarred trees in the Tatra Mountains, Poland[J]. Dendrochronologia, 26, 173-183(2008).

    [35] Ruiz-Villanueva V, Díez-Herrero A, Stoffel M et al. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain)[J]. Geomorphology, 118, 383-392(2010).

    [36] Ballesteros J A, Stoffel M, Bodoque J M et al. Changes in wood anatomy in tree rings of Pinus pinaster Ait. Following wounding by flash floods[J]. Tree-Ring Research, 66, 93-103(2010).

    [37] Ballesteros J A, Stoffel M, Bollschweiler M et al. Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica [J]. Tree Physiology, 30, 773-781(2010).

    [38] Ferrio J P, Díez-Herrero A, Tarrés D et al. Using stable isotopes of oxygen from tree-rings to study the origin of past flood events: First results from the Iberian Peninsula[J]. Quaternaire, 26, 67-80(2015).

    [39] Ballesteros-Cánovas J A, Eguibar M, Bodoque J M et al. Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic palaeostage indicators[J]. Hydrological Processes, 25, 970-979(2011).

    [40] Ballesteros-Cánovas J A, Stoffel M, Guardiola-Albert C. XRCT images and variograms reveal 3D changes in wood density of riparian trees affected by floods[J]. Trees, 29, 1115-1126(2015).

    [41] Grissino-Mayer H D. A manual and tutorial for the proper use of an increment borer[J]. Tree-Ring Research, 59, 63-79(2003).

    [42] Schneuwly D M, Stoffel M, Dorren L K et al. Three-dimensional analysis of the anatomical growth response of European conifers to mechanical disturbance[J]. Tree Physiology, 29, 1247-1257(2009).

    [43] Schneuwly D M, Stoffel M, Bollschweiler M. Formation and spread of callus tissue and tangential rows of resin ducts in Larix decidua and Picea abies following rockfall impacts[J]. Tree Physiology, 29, 281-289(2009).

    [44] Grissino-Mayer H D. Evaluating crossdating accuracy: A manual and tutorial for the computer program cofecha[J]. Tree-Ring Research, 57, 205-221(2001).

    [45] Gottesfeld A S. British Columbia flood scars: Maximum flood-stage indicator[J]. Geomorphology, 14, 319-325(1996).

    [46] George S S. Tree rings as paleoflood and paleostage indicators[J]. Tree Rings and Natural Hazards, 41, 233-239(2010).

    [47] Stoffel M, Wilford D J. Hydrogeomorphic processes and vegetation: Disturbance, process histories, dependencies and interactions[J]. Earth Surface Processes and Landforms, 37, 9-22(2012).

    [48] Stoffel M, Casteller A, Luckman B H et al. Spatiotemporal analysis of channel wall erosion in ephemeral torrents using tree roots: An example from the Patagonian Andes[J]. Geology, 40, 247-250(2012).

    [49] Stoffel M, Butler D R, Corona C. Mass movements and tree rings: A guide to dendrogeomorphic field sampling and dating[J]. Geomorphology, 200, 106-120(2013).

    [50] Yamamoto F, Kozlowski T T. Effects of flooding, tilting of stems, and ethrel application on growth, stem anatomy and ethylene production of pinus densiflora seedlings[J]. Journal of Experimental Botany, 38, 293-310(1987).

    [51] Friedman J M, Vincent K R, Shafroth P B. Dating floodplain sediments using tree-ring response to burial[J]. Earth Surface Processes and Landforms, 30, 1077-1091(2005).

    [52] Kogelnig-Mayer B, Stoffel M, Schneuwly-Bollschweiler M et al. Possibilities and limitations of dendrogeomorphic time-series reconstructions on sites influenced by debris flows and frequent snow avalanche activity[J]. Arctic, Antarctic, and Alpine Research, 43, 649-658(2011).

    [53] Stoffel M, Corona C. Dendroecological dating of geomorphic disturbance in trees[J]. Tree-Ring Research, 70, 3-20(2014).

    [54] Schneuwly-Bollschweiler M, Corona C, Stoffel M. How to improve dating quality and reduce noise in tree-ring based debris-flow reconstructions[J]. Quaternary Geochronology, 18, 110-118(2013).

    [55] Casteller A, Stoffel M, Crespo S et al. Dendrogeomorphic reconstruction of flash floods in the Patagonian Andes[J]. Geomorphology, 228, 116-123(2015).

    [56] Shroder J F. Dendro-geomorphological analysis of mass movement on Table Cliffs Plateau, Utah[J]. Quaternary Research, 9, 168-185(1978).

    [57] Butler D R, Malanson G P. A reconstruction of snow-avalanche characteristics in montana, USA, using vegetative indicators[J]. Journal of Glaciology, 31, 185-187(1985).

    [58] Šilhán K. Frequency, predisposition, and triggers of floods in flysch Carpathians: Regional study using dendrogeomorphic methods[J]. Geomorphology, 234, 243-253(2015).

    [59] Ruiz-Villanueva V, Diez-Herrero A, Bodoque J M et al. Characterisation of flash floods in small ungauged mountain basins of Central Spain using an integrated approach[J]. Catena, 110, 32-43(2013).

    [60] Ballesteros-Cánovas J A, Czajka B, Janecka K et al. Flash floods in the Tatra Mountain streams: Frequency and triggers[J]. Science of the Total Environment, 511, 639-648(2015).

    [61] Rodriguez-Morata C, Ballesteros-Cánovas J A, Trappmann D et al. Regional reconstruction of flash flood history in the Guadarrama range (Central System, Spain)[J]. Science of the Total Environment, 550, 406-417(2016).

    [62] Harrison S S, Reid J R. A flood-frequency graph based on tree-scar data[J]. Proceedings of the Northern Dakota Academy of Sciences, 21, 23-33(1967).

    [63] McCord V A. Fluvial process dendrogeomorphology: Reconstructions of flood events from the southwestern United States using flood-scarred trees[C]. Dean J S, Meko D M, Swetnam T W. Tree rings, environment and humanity. Tucson, USA: University of Arizona, 689-699(1996).

    [64] Jarrett R D, England J. Fluvial process dendrogeomorphology: Reconstructions of flood events . Reliability of paleostage indicators for paleoflood studies[C]. House P K, Webb R H, Baker V R, et al. Ancient floods, modern hazards: Principles and applications of paleoflood hydrology. Water science and application, vol. 5. Washington D C, USA: American Geophys, 91-109(2002).

    [65] Ballesteros-Cánovas J A, Trappmann D, Shekhar M et al. Regional flood-frequency reconstruction for Kullu district, Western Indian Himalayas[J]. Journal of Hydrology, 546, 140-149(2017).

    [66] Webb R H, Jarrett R D. One-dimensional estimation techniques for discharges of paleofloods and historical floods[C]. House P K, Webb R H, Baker V R, et al. Ancient floods, modern hazards: Principles and applications of paleoflood hydrology. Water science and application, vol. 5. Washington D C, USA: American Geophys, 111-125(2002).

    [67] Darby S. Effect of riparian vegetation on flow resistence and flood potential[J]. Journal of Hydraulic Engineering, 125, 443-454(1999).

    [68] Carling P A, Hoffman M, Blatter A S. Initial motion of boulders in bedrock channel[C]. House P K, Webb R H, Baker V R, et al. Ancient floods, modern hazards: Principles and applications of paleoflood hydrology. Water science and application, vol. 5. Washington D C, USA: American Geophys, 147-160(2002).

    [69] Ballesteros J A, Bodoque J M, Díez-Herrero A et al. Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling[J]. Journal of Hydrology, 403, 103-115(2011).

    [70] Ballesteros-Cánovas J A, Márquez-Peñaranda J F, Sánchez-Silva M et al. Can tree tilting be used for paleoflood discharge estimations?[J]. Journal of Hydrology, 529, 480-489(2015).

    [72] Shao X M, Xu Y, Yin Z Y et al. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau[J]. Quaternary Science Reviews, 29, 2111-2122(2010).

    [73] Yang B, Qin C, Wang J L et al. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. PNAS, 111, 2903-2908(2014).

    [74] Zhang Q B, Evans M N, Lyu L X. Moisture dipole over the Tibetan Plateau during the past five and a half centuries[J]. Nature Communications, 6, 8062(2015).

    [75] Liang E Y, Wang Y F, Piao S L. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau[J]. PNAS, 113, 4380-4385(2016).

    [76] Liu Y, Cobb K M, Song H M et al. Recent enhancement of central Pacific EI Niño variability relative to last eight centuries[J]. Nature Communications, 8, 15386(2017).

    [80] Lin A M, Lin S J. Tree damage and surface displacement: The 1931 M 8. 0 Fuyun earthquake[J]. The Journal of Geology, 106, 751-757(1998).

    [83] Malik I, Wistuba M, Tie Y B et al. Mass movements of differing magnitude and frequency in a developing high-mountain area of the Moxi Basin, Hengduan Mts, China: A hazard assessment[J]. Applied Geography, 87, 54-65(2017).

    [84] Yang B, Bräuning A, Dong Z B et al. Late Holocene monsoonal temperate glacier fluctuations on the Tibetan Plateau[J]. Global and Planetary Change, 60, 126-140(2008).

    [86] Zhu H F, Shao X M, Zhang H et al. Trees record changes of the temperate glaciers on the Tibetan Plateau: Potential and uncertainty[J]. Global and Planetary Change, 173, 15-23(2019).

    [87] Zhu H F, Xu P, Shao X M et al. Little Ice Age glacier fluctuations reconstructed for the southeastern Tibetan Plateau using tree rings[J]. Quaternary International, 283, 134-138(2013).

    [88] Zhang Y, Stoffel M, Liang E Y et al. Centennial-scale process activity in a complex landslide body in the Qilian Mountains, northeast Tibetan Plateau, China[J]. Catena, 179, 29-38(2019).

    Jiazhi QIE, Yong ZHANG. Advances in flash flood research based on dendrogeomorphology[J]. Progress in Geography, 2020, 39(3): 519
    Download Citation