• Matter and Radiation at Extremes
  • Vol. 9, Issue 2, 027602 (2024)
Chao Tian1,*, Minghai Yu1, Lianqiang Shan1, Fengjuan Wu2..., Bi Bi1, Qiangqiang Zhang1, Yuchi Wu1, Tiankui Zhang1, Feng Zhang1, Dongxiao Liu1, Weiwu Wang1, Zongqiang Yuan1, Siqian Yang1, Lei Yang1, Zhigang Deng1, Jian Teng1, Weimin Zhou1,3, Zongqing Zhao1, Yuqiu Gu1,3 and Baohan Zhang1|Show fewer author(s)
Author Affiliations
  • 1Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, People’s Republic of China
  • 2Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, People’s Republic of China
  • 3IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
  • show less
    DOI: 10.1063/5.0045112 Cite this Article
    Chao Tian, Minghai Yu, Lianqiang Shan, Fengjuan Wu, Bi Bi, Qiangqiang Zhang, Yuchi Wu, Tiankui Zhang, Feng Zhang, Dongxiao Liu, Weiwu Wang, Zongqiang Yuan, Siqian Yang, Lei Yang, Zhigang Deng, Jian Teng, Weimin Zhou, Zongqing Zhao, Yuqiu Gu, Baohan Zhang. Diagnosis of indirectly driven double shell targets with point-projection hard x-ray radiography[J]. Matter and Radiation at Extremes, 2024, 9(2): 027602 Copy Citation Text show less
    References

    [1] J. H.Nuckolls, A.Thiessen, L.Wood, G. B.Zimmerman. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139(1972).

    [2] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).

    [3] S.Atzeni, J.Meyer-ter-Vehn. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter(2004).

    [4] P.Amendt, R. L.Berger, J. D.Lindlet?al.. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339(2004).

    [5] J.Edwards, O.Landen, J.Lindl, E.Moses. Review of the national ignition campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [6] S.Jacquemot. Inertial confinement fusion for energy: Overview of the ongoing experimental, theoretical and numerical studies. Nucl. Fusion, 57, 102024(2017).

    [7] R.Betti, O. A.Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435(2016).

    [8] D. A.Callahan, D. T.Casey, O. A.Hurricaneet?al.. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2014).

    [9] H. B.Cai, L. Q.Shan, W. S.Zhanget?al.. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett., 120, 195001(2018).

    [10] L. F.Berzak Hopkins, L.Divol, S.Le Papeet?al.. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett., 120, 245003(2018).

    [11] R.Betti, V.Gopalaswamy, J. P.Knaueret?al.. Tripled yield in direct-drive laser fusion through statistical modelling. Nature, 565, 581(2019).

    [12] H.Abu-Shawareb, R.Acree, P.Adamset?al.. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett., 129, 075001(2022).

    [13] M. E.Glinsky, J.Hammer, M.Tabaket?al.. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas, 1, 1626(1994).

    [14] H.Azechi, Y.Fujimoto, K.Mimaet?al.. Plasma physics and laser development for the fast-ignition realization experiment (FIREX) project. Nucl. Fusion, 49, 104024(2009).

    [15] A. A.Solodov, C.Stoeckl, W.Theobaldet?al.. Initial cone-in-shell fast-ignition experiments on OMEGA. Phys. Plasmas, 18, 056305(2011).

    [16] K. S.Anderson, R.Betti, C. D.Zhouet?al.. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett., 98, 155001(2007).

    [17] K. S.Anderson, R.Betti, P. W.McKentyet?al.. A polar-drive shock-ignition design for the National Ignition Facility. Phys. Plasmas, 20, 056312(2013).

    [18] H.Hama, Y.Kitagawa, N.Miyanagaet?al.. Double-shell-target implosion by four beams from the GEKKO IV laser system. Phys. Rev. Lett., 51, 570(1983).

    [19] N. D.Delamater, S. C.Evans, W. S.Varnumet?al.. Progress toward ignition with noncryogenic double-shell capsules. Phys. Rev. Lett., 84, 5153(2000).

    [20] P.Amendt, J. D.Colvin, R. E.Tiptonet?al.. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis. Phys. Plasmas, 9, 2221(2002).

    [21] P.Amendt, M.Marinak, J. L.Milovich, H.Robey. Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs. Phys. Plasmas, 11, 1552(2004).

    [22] P.Amendt, H. S.Park, H.Robeyet?al.. Hohlraum-driven ignitionlike double-shell implosions on the omega laser facility. Phys. Rev. Lett., 94, 065004(2005).

    [23] N. D.Delamater, G. A.Kyrala, D. C.Wilsonet?al.. Direct drive double shell target implosion hydrodynamics on OMEGA. Laser Part. Beams, 23, 187(2005).

    [24] N. D.Delamater, M. A.Gunderson, G. A.Kyralaet?al.. Detailed diagnosis of a double-shell collision under realistic implosion conditions. Phys. Plasmas, 13, 056306(2006).

    [25] P.Amendt, C.Cerjan, A.Hamzaet?al.. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums. Phys. Plasmas, 14, 056312(2007).

    [26] P.Amendt, J.Milovich, H.Robeyet?al.. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF. Phys. Rev. Lett., 103, 145003(2009).

    [27] X. T.He, J. W.Li, W. B.Peiet?al.. Preheat of radiative shock in double-shell ignition targets. Phys. Plasmas, 20, 082707(2013).

    [28] S. C.Hsu, B.Scheiner, M. J.Schmittet?al.. First experiments on Revolver shell collisions at the OMEGA laser. Phys. Plasmas, 26, 072707(2019).

    [29] E. N.Loomis, E. C.Merritt, J. P.Sauppeet?al.. Experimental study of energy transfer in double shell implosions. Phys. Plasmas, 26, 052702(2019).

    [30] M. A.Barrios, K. B.Fournier, S. P.Reganet?al.. X-ray area backlighter development at the National Ignition Facility (invited). Rev. Sci. Instrum., 85, 11D502(2014).

    [31] B. J.Albright, K.Molvig, M. J.Schmittet?al.. Low fuel convergence path to direct-drive fusion ignition. Phys. Rev. Lett., 116, 255003(2016).

    [32] K.Akli, J. A.King, B.Zhanget?al.. Ti Kα radiography of Cu-doped plastic microshell implosions via spherically bent crystal imaging. Appl. Phys. Lett., 86, 191501(2005).

    [33] S.Lee, H.Sawada, T.Shirotoet?al.. Flash Kα radiography of laser-driven solid sphere compression for fast ignition. Appl. Phys. Lett., 108, 254101(2016).

    [34] E.Giraldez, B. R.Maddox, H. S.Parket?al.. High-resolution 17–75 keV backlighters for high energy density experiments. Phys. Plasmas, 15, 072705(2008).

    [35] D.Hey, A.MacPhee, R.Tommasiniet?al.. Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets (invited). Rev. Sci. Instrum., 79, 10E901(2008).

    [36] B.Barbrel, E.Brambrink, H. G.Weiet?al.. Direct density measurement of shock-compressed iron using hard x rays generated by a short laser pulse. Phys. Rev. E., 80, 056407(2009).

    [37] S. P.Hatchett, D. S.Hey, R.Tommasiniet?al.. Development of Compton radiography of inertial confinement fusion implosions. Phys. Plasmas, 18, 056309(2011).

    [38] B.Borm, D.Khaghani, P.Neumayer. Properties of laser-driven hard x-ray sources over a wide range of laser intensities. Phys. Plasmas, 26, 023109(2019).

    [39] L.Berzak Hopkins, O. L.Landen, R.Tommasiniet?al.. Time-resolved fuel density profiles of the stagnation phase of indirect-drive inertial confinement implosions. Phys. Rev. Lett., 125, 155003(2020).

    [40] L. Q.Shan, C.Tian, M. H.Yuet?al.. Radiography of direct drive double shell targets with hard x-rays generated by a short pulse laser. Nucl. Fusion, 59, 046012(2019).

    [41] K.Du, X. S.He, M. F.Liu, T.Wang, Z. W.Wang, J.Zhang. Recent progress in ICF target fabrication at RCLF. Matter Radiat. Extremes, 3, 135(2018).

    [42] X. H.Jiang, Z. C.Li, S. Y.Liuet?al.. A novel flat-response x-ray detector in the photon energy range of 0.1–4 keV. Rev. Sci. Instrum., 81, 073504(2010).

    [43] J.Li, L. Q.Shan, F.Zhanget?al.. Measurement of the injecting time of picosecond laser in indirect-drive integrated fast ignition experiments using an x-ray streak camera. Rev. Sci. Instrum., 90, 033504(2019).

    [44] C. D.Chen, M. H.Key, J. A.Kinget?al.. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters. Rev. Sci. Instrum., 79, 10E305(2008).

    [45] J.Meyer-ter-Vehn, R.Ramis, R.Schmalz. MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics. Comput. Phys. Commun., 49, 475(1988).

    [46] B.Canaud, W. J.Garbett, F.Philippe, R.Ramis, M.Temporal. Analysis of three-dimensional effects in laser driven thin-shell capsule implosions. Matter Radiat. Extremes, 4, 055402(2019).

    [47] S.Agostinelli, J.Allison, K.Amakoet?al.. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, 506, 250(2003).

    [48] J.Allison, K.Amako, J. E. A.Apostolakiset?al.. Geant4 developments and applications. IEEE Trans. Nucl. Sci., 53, 270(2006).

    [49] J.Allison, K.Amako, J.Apostolakiset?al.. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res., Sect. A, 835, 186(2016).

    [50] S.Chen, G.Golovin, C.Milleret?al.. Shielded radiography with a laser-driven MeV-energy X-ray source. Nucl. Instrum. Methods Phys. Res., Sect. B, 366, 217(2016).

    [51] K.Lan, Z. C.Li, J.Liuet?al.. Progress in octahedral spherical hohlraum study. Matter Radiat. Extremes, 1, 8(2016).

    [52] P.Amendt, Y.Ping, V. A.Smalyuket?al.. Enhanced energy coupling for indirectly driven inertial confinement fusion. Nat. Phys., 15, 138(2019).

    [53] S.Jiang, L.Jing, L.Kuanget?al.. Preliminary study on a tetrahedral hohlraum with four half-cylindrical cavities for indirectly driven inertial confinement fusion. Nucl. Fusion, 57, 046020(2017).

    [54] L.Antonelli, S.Atzeni, A.Schiaviet?al.. Laser-driven shock waves studied by x-ray radiography. Phys. Rev. E., 95, 063205(2017).

    [55] C.Bailey, D. K.Bradley, R.Tommasiniet?al.. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility. Phys. Plasmas, 24, 053104(2017).

    Chao Tian, Minghai Yu, Lianqiang Shan, Fengjuan Wu, Bi Bi, Qiangqiang Zhang, Yuchi Wu, Tiankui Zhang, Feng Zhang, Dongxiao Liu, Weiwu Wang, Zongqiang Yuan, Siqian Yang, Lei Yang, Zhigang Deng, Jian Teng, Weimin Zhou, Zongqing Zhao, Yuqiu Gu, Baohan Zhang. Diagnosis of indirectly driven double shell targets with point-projection hard x-ray radiography[J]. Matter and Radiation at Extremes, 2024, 9(2): 027602
    Download Citation