[1] Oliver G. Using flex in high-speed applications[J]. The PCB Magazine,2014,4:90-96.
[3] Huang D P, Liao S P, Ali Imam Sunny, et al. A novel au- tomatic surface scratch defect detection for fluid-conveying tube of Coriolis mass flow-meter based on 2D-direction fil- ter[J]. Measurement,2018,126:332-341.
[4] Zheng S, Yu D, Li Y, et al. An algorithm for texture re- moval and defect extraction [C]/ / 2019 IEEE 9th Annual International Conference on CYBER Technology in Automa- tion, Control, and Intelligent Systems (CYBER). IEEE, 2019: 917-921.
[5] Gao H, Zhang Y, Lv W, et al. A deep convolutional gen- erative adversarial networks-based method for defect detec- tion in small sample industrial parts images [J]. Applied Sciences, 2022, 12(13): 6569.
[6] Mi Z H, Song Y H, Yan Y. A defect classification network based on deformation dense connection in wire rod surface image[C]/ / 2019 2nd China Symposium on Cognitive Com- puting and Hybrid Intelligence (CCHI). IEEE,2019:55- 160.
[7] Zhao W D, Chen F, Huang H C, et al. A new steel defect detection algorithm based on deep learning[J]. Computa- tional Intelligence and Neuroscience,2021,2021:13.
[8] Wan X, Zhang X Y, Liu L L. An improved VGG19 trans- fer learning strip steel surface defect recognition deep neural network based on few samples and imbalanced datasets[J]. Applied Sciences,2021,11(6):2606.
[9] Xing J J, Jia M P, Xu F Y, et al. A method for workpiece surface small - defect detection based on CutMix and YOLOv3[J]. Journal of Southeast University(English Edi- tion),2021,37(2):128-136.
[10] Ma Z X, Li Y B, Huang M H, et al. A lightweight detector based on attention mechanism for aluminum strip surface defect detection [J ]. Computers in Industry, 2022, 136: 103585.
[11] Chen S L, Liao Y H, Lin F, et al. An Improved Light- weight YOLOv5 Algorithm for Detecting Strawberry Diseases [J]. IEEE Access,2023,11:54080-54092.
[12] Zhou S Y, Yin J. YOLO-Ship: a visible light ship detec- tion method [C]/ / 2022 2nd International Conference on Consumer Electronics and Computer Engineering ( IC- CECE). IEEE,2022:113-118.
[13] Park J, Woo S, Lee J Y, et al. Bam: Bottleneck attention module[J]. arXiv preprint arXiv:1807. 06514,2018.
[14] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]/ / Proceedings of the European conference on computer vision (ECCV). 2018:3-19.
[15] Wang Q L, Wu B G, Zhu P F, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks [C]/ / 2020 IEEE/ CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,2020:11534-11542.
[16] Hou Q B, Zhou D Q, Feng J S. Coordinate attention for ef- ficient mobile network design[C]/ / 2021 IEEE/ CVF Con- ference on Computer Vision and Pattern Recognition (CVPR). IEEE,2021:13708-13717.
[17] Liu S T, Huang D. Receptive field block net for accurate and fast object detection[C]/ / Proceedings of the European conference on computer vision (ECCV). 2018:385-400.
[18] Gevorgyan Z. SIoU loss: More powerful learning for boun- ding box regression[J]. arXiv preprint arXiv:2205. 12740, 2022.
[19] Wang C Y, Alexey B, Liao H Y. YOLOv7: Trainable bag- of-freebies sets new state-of-the-art for real-time object detectors[C]/ / Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition. 2023:7464 - 7475.
[20] Wei L, Dragomir A, Dumitru E, et al. SSD: Single shot multibox detector[C]/ / Proceedings of the European con- ference on computer vision (ECCV). 2016:21-37.