• Optoelectronics Letters
  • Vol. 17, Issue 11, 651 (2021)
Fang ZHANG1、2, Hongling ZHANG1、3, Yuefeng QI1、*, and Wei LI4
Author Affiliations
  • 1School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
  • 2Department of Information Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
  • 3School of Electric Engineering, Hebei University of Architecture, Zhangjiakou 075000, China
  • 4China Electronics Engineering Design Institute Co., Ltd., Beijing 100142, China
  • show less
    DOI: 10.1007/s11801-021-1050-1 Cite this Article
    ZHANG Fang, ZHANG Hongling, QI Yuefeng, LI Wei. Long dynamic range spread spectrum optical domain reflectometer[J]. Optoelectronics Letters, 2021, 17(11): 651 Copy Citation Text show less
    References

    [1] NYARKO B O, ADEKOYA A F, WEYORI B A. Predicting the actual location of faults in underground optical networks using linear regression[J]. Engineering reports, 2021, 3(2):e12304.

    [2] NAKAMURA A, OHASHI M, ODA T, et al. Simple technique for measuring optical properties of randomly coupled multi-core fiber using OTDR[J]. IEICE communications express, 2020, 10(3):177-185.

    [3] CHEN S L, YE C G, CHEN S B. Automatic monitoring system for dumping site slope based on OTDR & GBMS[J]. Dam and safety, 2020(1):26-31. (in Chinese)

    [4] EGOR L, DANIEL G, SHMUEL S. Detuned Brillouin amplification of OTDR signals with an enhanced signal- to-noise ratio[J]. Optics letters, 2017, 42(27) : 5166-5169.

    [5] MOSHE N, STEVEN A N, ROBIN P G, et al. Real-time long range complementary correlation optical time domain reflectometer[J]. Journal of lightwave technology, 1989, 7(1):24-38.

    [6] SAHU P K, GOWRE S C, MAHAPATRA S. Optical time-domain reflectometer performance improvement using complementary correlated prometheus orthonormal sequence[J]. IET optoelectron, 2008, 2(3):128-133.

    [7] IIDA H, KOSHIKIYA Y, ITO F, et al. High sensitivity coherent optical time domain reflectometry employing frequency division multiplexing[J]. Journal of lightwave technology, 2012, 30(8):1121-1126.

    [8] RENATA G, AMOS A, MOSHE N. Direct detection and coherent optical time-domain reflectometry with Golay complementary codes[J]. Journal of lightwave technology, 2013, 31(13):2207-2222.

    [9] JONES M D. Using simplex codes to improve OTDR sensitivity[J]. IEEE photonics technology letters, 1993, 5(7):822-824.

    [10] ZHANG X P, QIAO W Y, SUN Z H, et al. A distributed optical fiber sensing system for synchronous vibration and loss measurement[J]. Optoelectronics letters, 2016, 12(5):375-377.

    [11] ZHANG F, QI Y F, LI W. Using optical differential phase-shift keying to solve the bipolarity problem of spreading code in optical time domain reflectometer[J]. Results in physics, 2019, 13:102096.

    [12] QIAO Y Z, LU Z H, YAN B L, et al. Performance of differential phase shift keying maritime laser communication over log-normal distribution turbulence channel[J]. Optoelectronics letters, 2021, 17(2):90-95.

    [13] SHIEH W, YANG Q, MA Y. 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing[J]. Optics express, 2008, 16(9):6378-6386.

    [14] FATEMEH S, DAVID P, MICHA?L M, et al. DPSK modulation with a dual-drive silicon photonic loop-mirror modulator[J]. IEEE photonics technology letters, 2019, 31(13):1037-1040.

    ZHANG Fang, ZHANG Hongling, QI Yuefeng, LI Wei. Long dynamic range spread spectrum optical domain reflectometer[J]. Optoelectronics Letters, 2021, 17(11): 651
    Download Citation