[1] AHMADIVAND A, GERISLIOGLU B, AHUJA R et al. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings[J]. Materials Today, 32, 108-130(2020).
[2] VAFAPOUR Z, KESHAVARZ A, GHAHRALOUD H. The potential of terahertz sensing for cancer diagnosis[J]. Heliyon, 6, E05623(2020).
[3] RYDER M R, VAN DE VOORDE B, CIVALLERI B et al. Detecting molecular rotational dynamics complementing the low-frequency terahertz vibrations in a zirconium-based metal-organic framework[J]. Physical Review Letters, 118, 255502(2017).
[4] CHEN H T, PADILLA W J, ZIDE J M O et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).
[5] SOUKOULIS C M, LINDEN S, WEGENER M. Negative refractive index at optical wavelengths[J]. Science, 315, 47-49(2007).
[6] JEBELLI A, OROOJALIAN F, FATHI F et al. Recent advances in surface plasmon resonance biosensors for microRNAs detection[J]. Biosensors and Bioelectronics, 169, 112599(2020).
[7] RIBEIRO J A, SALES M G F, PEREIRA C M. Electrochemistry combined-surface plasmon resonance biosensors: A review[J]. TrAC Trends in Analytical Chemistry, 157, 116766(2022).
[8] TARBOUSH S, SARIEDDEEN H, CHEN H et al. TeraMIMO: A channel simulator for wideband ultra-massive MIMO terahertz communications[J]. IEEE Transactions on Vehicular Technology, 70, 12325-12341(2021).
[9] GONG A P, QIU Y T, CHEN X W et al. Biomedical applications of terahertz technology[J]. Applied Spectroscopy Reviews, 55, 418-438(2020).
[10] FENG C H, OTANI C. Terahertz spectroscopy technology as an innovative technique for food: Current state-of-the-Art research advances[J]. Critical Reviews in Food Science and Nutrition, 61, 2523-2543(2021).
[11] AFSAH-HEJRI L, AKBARI E, TOUDESHKI A et al. Terahertz spectroscopy and imaging: A review on agricultural applications[J]. Computers and Electronics in Agriculture, 177, 105628(2020).
[12] SHANG Y T, XIANG X R, YE Q H et al. Advances in nanomaterial-based microfluidic platforms for on-site detection of foodborne bacteria[J]. TrAC Trends in Analytical Chemistry, 147, 116509(2022).
[13] FATTAHI Z, HASANZADEH M. Nanotechnology-assisted microfluidic systems for chemical sensing, biosensing, and bioanalysis[J]. TrAC Trends in Analytical Chemistry, 152, 116637(2022).
[14] CHEN S Y, SUN Y C, FAN F F et al. Present status of microfluidic PCR chip in nucleic acid detection and future perspective[J]. TrAC Trends in Analytical Chemistry, 157, 116737(2022).
[15] CHENG D, ZHANG B, LIU G et al. Terahertz ultrasensitive biosensing metamaterial and metasurface based on spoof surface plasmon polaritons[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33, e2529(2020).
[16] CHEN X, FAN W H. Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon[J]. Scientific Reports, 7, 2092(2017).
[17] MIYAMARU F, HAYASHI S, OTANI C et al. Terahertz surface-wave resonant sensor with a metal hole array[J]. Optics Letters, 31, 1118-1120(2006).
[18] LEE S H, LEE D, CHOI M H et al. Highly sensitive and selective detection of steroid hormones using terahertz molecule-specific sensors[J]. Analytical Chemistry, 91, 6844-6849(2019).
[19] TIAN Z, HAN J G, LU X C et al. Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes[J]. Chemical Physics Letters, 475, 132-134(2009).
[20] RAO L, YANG D X, ZHANG L et al. Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays[J]. Applied Optics, 51, 912-916(2012).
[21] O’HARA J F, SINGH R, BRENER I et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations[J]. Optics Express, 16, 1786-1795(2008).
[22] NIKNAM S, YAZDI M, AMLASHI S B. Enhanced ultra-sensitive metamaterial resonance sensor based on double corrugated metal stripe for terahertz sensing[J]. Scientific Reports, 9, 7516(2019).
[23] KUMAR A, GUPTA M, PITCHAPPA P et al. Active ultrahigh-Q (0.2 × 106) THz topological cavities on a chip[J]. Advanced Materials, 34, 2202370(2022).
[24] YAN X, YANG M S, ZHANG Z et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 126, 485-492(2019).
[25] ZHANG J, MU N, LIU L H et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency[J]. Biosensors and Bioelectronics, 185, 113241(2021).
[26] YANG J H, LIN Y S. Design of tunable terahertz metamaterial sensor with single-and dual-resonance characteristic[J]. Nanomaterials, 11, 2212(2021).
[27] ZHANG Z Y, ZHONG C Z, FAN F et al. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor[J]. Sensors and Actuators B: Chemical, 330, 129315(2021).
[28] FAN F, ZHONG C Z, ZHANG Z Y et al. Terahertz chiral sensing and magneto-optical enhancement for ferromagnetic nanofluids in the chiral metasurface[J]. Nanoscale Advances, 3, 4790-4798(2021).
[29] WANG Y, CUI Z J, ZHANG X J et al. Excitation of surface plasmon resonance on multiwalled carbon nanotube metasurfaces for pesticide sensors[J]. ACS Applied Materials & Interfaces, 12, 52082-52088(2020).
[30] CHEN F, CHENG Y Z, LUO H. Temperature tunable narrow-band terahertz metasurface absorber based on InSb micro-cylinder arrays for enhanced sensing application[J]. IEEE Access, 8, 82981-82988(2020).
[31] ZHONG Y J, DU L H, LIU Q et al. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range[J]. RSC Advances, 10, 33018-33025(2020).
[32] AMIN M, SIDDIQUI O, ABUTARBOUSH H et al. A THz graphene metasurface for polarization selective virus sensing[J]. Carbon, 176, 580-591(2021).
[33] RODRIGO D, LIMAJ O, JANNER D et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 349, 165-168(2015).
[34] CUI Z J, WANG Y, SHI Y Q et al. Significant sensing performance of an all-silicon terahertz metasurface chip for Bacillus thuringiensis Cry1Ac protein[J]. Photonics Research, 10, 740-746(2022).
[35] HU H, CUI Z J, YUE L S et al. A silicon-based metasurface for terahertz sensing[J]. Optics Communications, 506, 127572(2022).
[36] XIANG Y J, ZHU J Q, WU L M et al. Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene[J]. IEEE Photonics Journal, 10, 6800507(2018).
[37] PAPASIMAKIS N, THONGRATTANASIRI S, ZHELUDEV N I, et al. The magic response of graphene splitring metamaterials[J]. Light: Science & Applications, 2013, 2(7): e78.
[38] CEN C L, ZHANG Y B, CHEN X F et al. A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency[J]. Physica E: Low-dimensional Systems and Nanostructures, 117, 113840(2020).
[39] LOW T, CHAVES A, CALDWELL J D et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 16, 182-194(2017).
[40] ZHONG Y J, HUANG Y, ZHONG S C et al. Tunable terahertz broadband absorber based on MoS2 ring-cross array structure[J]. Optical Materials, 114, 110996(2021).
[41] SHEN S L, LIU X D, SHEN Y C et al. Recent advances in the development of materials for terahertz metamaterial sensing[J]. Advanced Optical Materials, 10, 2101008(2022).
[42] NEUBRECH F, PUCCI A, CORNELIUS T W et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection[J]. Physical Review Letters, 101, 157403(2008).
[43] LUPI S, MOLLE A. Emerging Dirac materials for THz plasmonics[J]. Applied Materials Today, 20, 100732(2020).
[44] YAO H Y, SUN Z Q, YAN X et al. Ultrasensitive, light-induced reversible multidimensional biosensing using THz metasurfaces hybridized with patterned graphene and perovskite[J]. Nanophotonics, 11, 1219-1230(2022).
[45] LEE S H, CHOE J H, KIM C et al. Graphene assisted terahertz metamaterials for sensitive bio-sensing[J]. Sensors and Actuators B: Chemical, 310, 127841(2020).
[46] KIM T T, OH S S, KIM H D et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials[J]. Science Advances, 3, e1701377(2017).
[47] CHEN X, FAN W H, SONG C. Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing[J]. Carbon, 133, 416-422(2018).
[48] ZHOU R Y, WANG C, HUANG Y X et al. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures[J]. Biosensors and Bioelectronics, 188, 113336(2021).
[49] ZHANG Z Y, YANG G, FAN F et al. Terahertz circular dichroism sensing of living cancer cells based on microstructure sensor[J]. Analytica Chimica Acta, 1180, 338871(2021).
[50] CHOI W J, YANO K, CHA M et al. Chiral phonons in microcrystals and nanofibrils of biomolecules[J]. Nature Photonics, 16, 366-373(2022).
[51] NIESSEN K A, XU M Y, GEORGE D K et al. Protein and RNA dynamical fingerprinting[J]. Nature Communications, 10, 1026(2019).
[52] LI J, YAO Y X, JIANG L W et al. Time-domain terahertz optoacoustics: manipulable water sensing and dampening[J]. Advanced Photonics, 3, 026003(2021).
[53] LI Y Y, CHEN X Y, HU F R et al. Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein[J]. Journal of Physics D: Applied Physics, 52, 095105(2019).
[54] ZHANG Z, YANG M S, YAN X et al. The antibody-free recognition of cancer cells using plasmonic biosensor platforms with the anisotropic resonant metasurfaces[J]. ACS Applied Materials & Interfaces, 12, 11388-11396(2020).
[55] LIN S J, XU X L, HU F R et al. Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 6900207(2021).
[56] XU W D, XIE L J, YING Y B. Mechanisms and applications of terahertz metamaterial sensing: a review[J]. Nanoscale, 9, 13864-13878(2017).
[57] AHMADIVAND A, GERISLIOGLU B, RAMEZANI Z et al. Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins[J]. Biosensors and Bioelectronics, 177, 112971(2021).
[58] LIN S J, WANG Y L, PENG Z Y et al. Detection of cancer biomarkers CA125 and CA199 via terahertz metasurface immunosensor[J]. Talanta, 248, 123628(2022).
[59] ZENG Q P, LIU W T, LIN S J et al. Aptamer HB5 modified terahertz metasurface biosensor used for specific detection of HER2[J]. Sensors and Actuators B: Chemical, 355, 131337(2022).
[60] WANG Y, WANG Y L, HU F R et al. Surface-functionalized terahertz metamaterial biosensor used for the detection of exosomes in patients[J]. Langmuir, 38, 3739-3747(2022).
[61] MEN K, LIAN Z W, TU H L et al. An all-dielectric metamaterial terahertz biosensor for cytokine detection[J]. Micromachines, 15, 53(2023).
[62] BOLIVAR P H, BRUCHERSEIFER M, NAGEL M et al. Label-free probing of the binding state of DNA by time-domain terahertz sensing[J]. Materials Science Forum, 384-385, 253-258(2002).
[63] ZHAN X Y, YANG S, HUANG G R et al. Streptavidin-functionalized terahertz metamaterials for attomolar exosomal microRNA assay in pancreatic cancer based on duplex-specific nuclease-triggered rolling circle amplification[J]. Biosensors and Bioelectronics, 188, 113314(2021).
[64] ZHANG M, ZHANG S J, WANG Q W et al. Flexible specific determination of glucose in solution, blood serum, and sweat using a terahertz hydrogel-functionalized metamaterial[J]. Advanced Materials Technologies, 8, 2300775(2023).
[65] WU X J, QUAN B G, PAN X C et al. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specificbiosensor[J]. Biosensors and Bioelectronics, 42, 626-631(2013).
[66] ZHOU J, ZHAO X, HUANG G R et al. Molecule-specific terahertz biosensors based on an aptamer hydrogel-functionalized metamaterial for sensitive assays in aqueous environments[J]. ACS Sensors, 6, 1884-1890(2021).
[67] ZHANG C B, XUE T J, ZHANG J et al. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells[J]. Nanophotonics, 11, 101-109(2021).
[68] HAMZA M N, ISLAM M T. Designing an extremely tiny dual-band biosensor based on MTMs in the terahertz region as a perfect absorber for non-melanoma skin cancer diagnostics[J]. IEEE Access, 11, 136770-136781(2023).
[69] AHMADIVAND A, GERISLIOGLU B, TOMITAKA A et al. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells[J]. Biomedical Optics Express, 9, 373-386(2018).
[70] GUAN M C, SUN X, WEI J et al. High-sensitivity terahertz biosensor based on plasmon-induced transparency metamaterials[J]. Photonics, 10, 1258(2023).
[71] ZHANG C H, LIANG L J, DING L et al. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor[J]. Applied Physics Letters, 108, 241105(2016).
[72] YANG X Y, LI M, PENG Q et al. Label-free detection of living cervical cells based on microfluidic device with terahertz spectroscopy[J]. Journal of Biophotonics, 15, e202100241(2022).
[73] LI Z X, YAN S H, ZANG Z Y et al. Single cell imaging with near-field terahertz scanning microscopy[J]. Cell Proliferation, 53, e12788(2020).
[74] WANG L L. Terahertz imaging for breast cancer detection[J]. Sensors, 21, 6465(2021).
[75] BOWMAN T, EL-SHENAWEE M, CAMPBELL L K. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas[J]. Biomedical Optics Express, 7, 3756-3783(2016).
[76] TABATABAEIAN Z S. Developing THz metasurface with array rectangular slot with High Q-factor for early skin cancer detection[J]. Optik, 264, 169400(2022).
[77] ALIBAKHSHIKENARI M, VIRDEE B S, SHUKLA P et al. Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection[J]. IEEE Access, 8, 174667-174678(2020).
[78] LEE S H, SHIN S, ROH Y et al. Label-free brain tissue imaging using large-area terahertz metamaterials[J]. Biosensors and Bioelectronics, 170, 112663(2020).
[79] ROH Y, LEE S H, KWAK J et al. Terahertz imaging with metamaterials for biological applications[J]. Sensors and Actuators B: Chemical, 352, 130993(2022).
[80] TAN T C W, SRIVASTAVA Y K, AKO R T et al. Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing[J]. Advanced Materials, 33, 2100836(2021).
[81] ZHU M, ZHANG L, MA S Q et al. Terahertz metamaterial designs for capturing and detecting circulating tumor cells[J]. Materials Research Express, 6, 045805(2019).