• Advanced Photonics Nexus
  • Vol. 3, Issue 6, 066009 (2024)
Yuan Li1, Xiuquan Zhang2, Lutong Cai1,*, and Lin Zhang1,3,*
Author Affiliations
  • 1Tianjin University, School of Precision Instruments and Opto-Electronics Engineering, State Key Laboratory of Precision Measuring Technology and Instruments, Key Laboratory of Opto-Electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-Electronics Technologies and Devices, Tianjin, China
  • 2Shandong University, Ministry of Education, Key Laboratory of Laser and Infrared System, Qingdao, China
  • 3Peng Cheng Laboratory, Shenzhen, China
  • show less
    DOI: 10.1117/1.APN.3.6.066009 Cite this Article Set citation alerts
    Yuan Li, Xiuquan Zhang, Lutong Cai, Lin Zhang, "Highly efficient second-harmonic generation in a double-layer thin-film lithium niobate waveguide," Adv. Photon. Nexus 3, 066009 (2024) Copy Citation Text show less
    References

    [1] R. W. Boyd. Nonlinear Optics(2020).

    [2] Y. Okawachi et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 7, 702-707(2020).

    [3] F. Mondain et al. Chip-based squeezing at a telecom wavelength. Photonics Res., 7, A36-A39(2019).

    [4] D. D. Arslanov et al. Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing. Laser Photonics Rev., 7, 188-206(2013).

    [5] T. H. Wu et al. Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides. Nat. Photonics, 18, 218-223(2024).

    [6] A. Boes et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science, 379, eabj4396(2023).

    [7] C. Langrock et al. All-optical signal processing using χ(2) nonlinearities in guided-wave devices. J. Lightwave Technol., 24, 2579-2592(2006).

    [8] K. R. Parameswaran et al. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett., 27, 179(2002).

    [9] F. Thiele et al. Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides. Opt. Express, 28, 28961(2020).

    [10] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242(2021).

    [11] R. Gao et al. Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett., 20, 011902(2022).

    [12] B. Pan et al. Perspective on lithium-niobate-on-insulator photonics utilizing the electro-optic and acousto-optic effects. ACS Photonics, 10, 2078-2090(2023).

    [13] M. He et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbits1 and beyond. Nat. Photonics, 13, 359-364(2019). https://doi.org/10.1038/s41566-019-0378-6

    [14] Z. Zhang et al. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain. Opt. Lett., 48, 4344(2023).

    [15] L. Shao et al. Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate. Opt. Express, 28, 23728(2020).

    [16] M. G. Vazimali, S. Fathpour. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics, 4, 034001(2022).

    [17] M. D. Eisaman et al. Invited review article: single-photon sources and detectors. Rev. Sci. Instrum., 82, 071101(2011).

    [18] X. Guo et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl., 6, e16249(2016).

    [19] D. T. Spencer et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [20] N. Jornod et al. Monolithically integrated femtosecond optical parametric oscillators. Optica, 10, 826(2023).

    [21] L. Chang et al. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531(2016).

    [22] C. Wang et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438(2018).

    [23] J. Zhao et al. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express, 28, 19669(2020).

    [24] X. Liu et al. Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate. Adv. Photonics Nexus, 1, 016001(2022).

    [25] J. Wei et al. All-optical wavelength conversion of a 92-Gb/s 16-QAM signal within the C-band in a single thin-film PPLN waveguide. Opt. Express, 30, 30564(2022).

    [26] K. Mizuuchi et al. Electric-field poling in Mg-doped LiNbO3. J. Appl. Phys., 96, 6585-6590(2004). https://doi.org/10.1063/1.1811391

    [27] Y. Niu et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).

    [28] A. Rao et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%  W1cm2. Opt. Express, 27, 25920-25930(2019). https://doi.org/10.1364/OE.27.025920

    [29] P.K. Chen et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat. Nanotechnol., 19, 44-50(2024).

    [30] C. Lu et al. Highly tunable birefringent phase-matched second-harmonic generation in an angle-cut lithium niobate-on-insulator ridge waveguide. Opt. Lett., 47, 1081(2022).

    [31] M. T. Hansen et al. Efficient and robust second-harmonic generation in thin-film lithium niobate using modal phase matching. Front. Photonics, 4, 1324648(2023).

    [32] R. Luo et al. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006(2018).

    [33] R. Geiss et al. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation. Opt. Lett., 40, 2715(2015).

    [34] L. Cai, Y. Wang, H. Hu. Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film. Opt. Commun., 387, 405-408(2017).

    [35] L. Cai et al. Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides. Sci. Rep., 8, 12478(2018).

    [36] R. Luo et al. Semi‐nonlinear nanophotonic waveguides for highly efficient second‐harmonic generation. Laser Photonics Rev., 13, 1800288(2019).

    [37] X. Li et al. Efficient second harmonic generation by harnessing bound states in the continuum in semi-nonlinear etchless lithium niobate waveguides. Light Sci. Appl., 11, 317(2022).

    [38] H. Du et al. Highly efficient, modal phase-matched second harmonic generation in a double-layered thin film lithium niobate waveguide. Opt. Express, 31, 9713(2023).

    [39] L. Wang, X. Zhang, F. Chen. Efficient second harmonic generation in a reverse‐polarization dual‐layer crystalline thin film nanophotonic waveguide. Laser Photonics Rev., 15, 2100409(2021).

    [40] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol % magnesium oxide–doped lithium niobate. J. Opt. Soc. Amer. B, 14, 3319-3322(1997).

    [41] L. Moretti et al. Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions. J. Appl. Phys., 98, 036101(2005).

    [42] X. Guo, C. Zou, H. X. Tang. Second-harmonic generation in aluminum nitride microrings with 2500% /W conversion efficiency. Optica, 3, 1126(2016).

    [43] J. Lu et al. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica, 7, 1654(2020).

    Yuan Li, Xiuquan Zhang, Lutong Cai, Lin Zhang, "Highly efficient second-harmonic generation in a double-layer thin-film lithium niobate waveguide," Adv. Photon. Nexus 3, 066009 (2024)
    Download Citation