• Advanced Photonics
  • Vol. 6, Issue 3, 036003 (2024)
Antoine Henry1,*, Dario A. Fioretto2, Lorenzo M. Procopio3, Stéphane Monfray4..., Frédéric Boeuf4, Laurent Vivien2, Eric Cassan2, Carlos Alonzo-Ramos2, Kamel Bencheikh2, Isabelle Zaquine1 and Nadia Belabas2,*|Show fewer author(s)
Author Affiliations
  • 1Institut Polytechnique de Paris, LTCI, Télécom Paris, Palaiseau, France
  • 2Université Paris-Saclay, CNRS, Centre for Nanosciences and Nanotechnology, UMR 9001, Palaiseau, France
  • 3Weizmann Institute of Science, Rehovot, Israel
  • 4STMicroelectronics SAS, Crolles, France
  • show less
    DOI: 10.1117/1.AP.6.3.036003 Cite this Article Set citation alerts
    Antoine Henry, Dario A. Fioretto, Lorenzo M. Procopio, Stéphane Monfray, Frédéric Boeuf, Laurent Vivien, Eric Cassan, Carlos Alonzo-Ramos, Kamel Bencheikh, Isabelle Zaquine, Nadia Belabas, "Parallelization of frequency domain quantum gates: manipulation and distribution of frequency-entangled photon pairs generated by a 21 GHz silicon microresonator," Adv. Photon. 6, 036003 (2024) Copy Citation Text show less
    References

    [1] J. M. Lukens, P. Lougovski. Frequency-encoded photonic qubits for scalable quantum information processing. Optica, 4, 8-16(2017).

    [2] M. Kues et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622-626(2017).

    [3] P. Imany et al. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonato. Opt. Express, 26, 1825-1840(2018).

    [4] H.-H. Lu et al. Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements. Nat. Commun., 13, 4338(2022).

    [5] H. Mahmudlu et al. Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation. Nat. Photonics, 17, 518-524(2023).

    [6] P. Imany et al. Frequency-domain Hong-Ou-Mandel interference with linear optics. Opt. Lett., 43, 2760-2763(2018).

    [7] H.-H. Lu et al. Quantum interference and correlation control of frequency-bin qubits. Optica, 5, 1455-1460(2018).

    [8] M. Cabrejo-Ponce et al. High-dimensional entanglement for quantum communication in the frequency domain. Laser Photonics Rev., 17, 2201010(2023).

    [9] M. Clementi et al. Programmable frequency-bin quantum states in a nano-engineered silicon device. Nat. Commun., 14, 176(2023).

    [10] M. Borghi et al. Reconfigurable silicon photonic chip for the generation of frequency-bin-entangled qudits. Phys. Rev. Appl., 19, 064026(2023).

    [11] F. A. Sabattoli et al. A silicon source of frequency-bin entangled photons. Opt. Lett., 47, 6201-6204(2022).

    [12] A. K. Kashi, M. Kues. Spectral Hong-Ou-Mandel interference between independently generated single photons for scalable frequency-domain quantum processing. Laser Photonics Rev., 15, 2000464(2021).

    [13] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [14] X. Zhang et al. Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides. J. Opt., 18, 074016(2016).

    [15] F. Samara et al. High-rate photon pairs and sequential Time-Bin entanglement with Si3N4 microring resonators. Opt. Express, 27, 19309-19318(2019). https://doi.org/10.1364/OE.27.019309

    [16] Z. Yin et al. Frequency correlated photon generation at telecom band using silicon nitride ring cavities. Opt. Express, 29, 4821-4829(2021).

    [17] S. Clemmen et al. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express, 17, 16558-16570(2009).

    [18] T. Kobayashi et al. Frequency-domain Hong-Ou-Mandel interference. Nat. Photonics, 10, 441-444(2016).

    [19] M. G. Raymer et al. Interference of two photons of different color. Opt. Commun., 283, 747-752(2010).

    [20] L. Olislager et al. Creating and manipulating entangled optical qubits in the frequency domain. Phys. Rev. A, 89, 052323(2014).

    [21] L. Olislager et al. Frequency-bin entangled photons. Phys. Rev. A, 82, 013804(2010).

    [22] M. Bloch et al. Frequency-coded quantum key distribution. Opt. Lett., 32, 301-303(2007).

    [23] H.-H. Lu et al. Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett., 120, 030502(2018).

    [24] H.-H. Lu et al. Fully arbitrary control of frequency-bin qubits. Phys. Rev. Lett., 125, 120503(2020).

    [25] H.-H. Lu et al. A controlled-NOT gate for frequency-bin qubits. NPJ Quantum Inf., 5, 24(2019).

    [26] H.-H. Lu et al. Subatomic many-body physics simulations on a quantum frequency processor, FTh3A.6(2019).

    [27] H.-H. Lu et al. High-dimensional discrete Fourier transform gates with a quantum frequency processor. Opt. Express, 30, 10126-10134(2022).

    [28] S. Azzini et al. From classical four-wave mixing to parametric fluorescence in silicon microring resonators. Opt. Lett., 37, 3807-3809(2012).

    [29] T.-Y. Chen et al. Field test of a practical secure communication network with decoy-state quantum cryptography. Opt. Express, 17, 6540-6549(2009).

    [30] I. Herbauts et al. Demonstration of active routing of entanglement in a multi-user network. Opt. Express, 21, 29013-29024(2013).

    [31] W. Wen et al. Realizing an entanglement-based multiuser quantum network with integrated photonics. Phys. Rev. Appl., 18, 024059(2022).

    [32] Y. Zheng et al. Multichip multidimensional quantum networks with entanglement retrievability. Science, 381, 221-226(2023).

    [33] S. Wengerowsky et al. Entanglement-based wavelength multiplexed quantum communication network. Nature, 564, 225-228(2018).

    [34] F. Appas et al. Flexible entanglement-distribution network with an AlGaAs chip for secure communications. NPJ Quantum Inf., 7, 118(2021).

    [35] S. K. Joshi et al. A trusted-node-free eight-user metropolitan quantum communication network. Sci. Adv., 6, eaba0959(2020).

    [36] N. B. Lingaraju et al. Adaptive bandwidth management for entanglement distribution in quantum networks. Optica, 8, 329-332(2021).

    [37] I. Choi, R. J. Young, P. D. Townsend. Quantum information to the home. New J. Phys., 13, 063039(2011).

    [38] X. Liu et al. 40-user fully connected entanglement-based quantum key distribution network without trusted node. PhotoniX, 3, 2(2022).

    [39] F. Boeuf et al. Silicon photonics R&D and manufacturing on 300-mm wafer platform. J. Lightwave Technol., 34, 286-295(2016).

    [40] W. Bogaerts, S. K. Selvaraja. Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends. IEEE Photonics J., 3, 422-432(2011).

    [41] P. T. Do et al. Wideband tunable microwave signal generation in a silicon-micro-ring-based optoelectronic oscillator. Sci. Rep., 10, 6982(2020).

    [42] F. Mazeas et al. High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip. Opt. Express, 24, 28731-28738(2016).

    [43] D. Oser et al. High-quality photonic entanglement out of a stand-alone silicon chip. NPJ Quantum Inf., 6, 31(2020).

    [44] O. Alibart. Source de photons uniques annoncés à 1550 nm en optique guidée pour les communications quantiques(2004).

    [45] W. C. Jiang et al. Silicon-chip source of bright photon pairs. Opt. Express, 23, 20884-20904(2015).

    [46] E. Fitzke et al. Scalable network for simultaneous pairwise quantum key distribution via entanglement-based time-bin coding. PRX Quantum, 3, 020341(2022).

    [47] O. E. Sandoval et al. Polarization diversity phase modulator for measuring frequency-bin entanglement of a biphoton frequency comb in a depolarized channel. Opt. Lett., 44, 1674-1677(2019).

    [48] C. Autebert et al. Multi-user quantum key distribution with entangled photons from an AlGaAs chip. Quantum Sci. Technol., 6, 01LT02(2016).

    [49] N. Lütkenhaus. Security against individual attacks for realistic quantum key distribution. Phys. Rev. A, 61, 052304(2000).

    [50] B. E. Nussbaum et al. Design methodologies for integrated quantum frequency processors. J. Lightwave Technol., 40, 7648-7657(2022).

    [51] Y. Hu et al. On-chip electro-optic frequency shifters and beam splitters. Nature, 599, 587-593(2021).

    [52] S. Buddhiraju et al. Arbitrary linear transformations for photons in the frequency synthetic dimension. Nat. Commun., 12, 2401(2021).

    [53] M. He et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [54] X. Wang et al. Integrated thin-silicon passive components for hybrid silicon-lithium niobate photonics. Opt. Contin., 6, 2233-2244(2022).

    [55] F. Valdez et al. 110 GHz, 110 mW hybrid silicon-lithium niobate Mach-Zehnder modulator. Sci. Rep., 12, 18611(2022).

    Antoine Henry, Dario A. Fioretto, Lorenzo M. Procopio, Stéphane Monfray, Frédéric Boeuf, Laurent Vivien, Eric Cassan, Carlos Alonzo-Ramos, Kamel Bencheikh, Isabelle Zaquine, Nadia Belabas, "Parallelization of frequency domain quantum gates: manipulation and distribution of frequency-entangled photon pairs generated by a 21 GHz silicon microresonator," Adv. Photon. 6, 036003 (2024)
    Download Citation