• Acta Optica Sinica (Online)
  • Vol. 1, Issue 6, 0608001 (2024)
Yu Yan1, Jiamin Li1,*, Jiang Qiu1, Zihua Liu1..., Shuangping Han1, Yanqiang Guo1,2, Chengbing Qin1,3,** and Liantuan Xiao1,2,3,***|Show fewer author(s)
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi , China
  • 2Key Laboratory of New Sensors and Intelligent Control, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi , China
  • 3Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    DOI: 10.3788/AOSOL240451 Cite this Article Set citation alerts
    Yu Yan, Jiamin Li, Jiang Qiu, Zihua Liu, Shuangping Han, Yanqiang Guo, Chengbing Qin, Liantuan Xiao. Preparation of Ultra-Strong Photon Correlation Light Field in Optical Communication Band[J]. Acta Optica Sinica (Online), 2024, 1(6): 0608001 Copy Citation Text show less
    References

    [1] Glauber R J. The quantum theory of optical coherence[J]. Physical Review, 130, 2529-2539(1963).

    [2] Hanbury-Brown R, Twiss R Q. A test of a new type of stellar interferometer on Sirius[J]. Nature, 178, 1046-1048(1956).

    [3] Muñoz C S, del Valle E, Tudela A G et al. Emitters of N-photon bundles[J]. Nature Photonics, 8, 550-555(2014).

    [4] Tomlins P H, Wang R K. Theory, developments and applications of optical coherence tomography[J]. Journal of Physics D, 38, 2519-2535(2005).

    [5] Abouraddy A F, Nasr M B, Saleh B E A et al. Quantum-optical coherence tomography with dispersion cancellation[J]. Physical Review A, 65, 053817(2002).

    [6] Okoth C, Cavanna A, Santiago-Cruz T et al. Microscale generation of entangled photons without momentum conservation[J]. Physical Review Letters, 123, 263602(2019).

    [7] Guo Q B, Qi X Z, Zhang L S et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal[J]. Nature, 613, 53-59(2023).

    [8] Zia D, Dehghan N, D’Errico A et al. Interferometric imaging of amplitude and phase of spatial biphoton states[J]. Nature Photonics, 17, 1009-1016(2023).

    [9] Qu C, Zhang S H, Li X X et al. Theoretical investigation of pure-state single-photon and large-bandwidth-correlation biphoton generation from micro/nanofiber[J]. Optics Letters, 48, 2813-2816(2023).

    [10] Manceau M, Spasibko K Y, Leuchs G et al. Indefinite-mean Pareto photon distribution from amplified quantum noise[J]. Physical Review Letters, 123, 123606(2019).

    [11] Afek I, Ambar O, Silberberg Y. High-NOON states by mixing quantum and classical light[J]. Science, 328, 879-881(2010).

    [12] Jechow A, Seefeldt M, Kurzke H et al. Enhanced two-photon excited fluorescence from imaging agents using true thermal light[J]. Nature Photonics, 7, 973-976(2013).

    [13] Luo S, Zheng H B, Xu W T et al. Temporal and spatial superbunching effects from a pair of modulated distinguishable classical lights[J]. Journal of the Optical Society of America B, 38, 2148-2154(2021).

    [14] Bai B, Liu J B, Zhou Y et al. Photon superbunching of classical light in the Hanbury Brown‒Twiss interferometer[J]. Journal of the Optical Society of America B, 34, 2081-2088(2017).

    [15] Kaneda F, Garay-Palmett K, U’Ren A B et al. Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion[J]. Optics Express, 24, 10733-10747(2016).

    [16] Zhu S J, Cui L, Li X Y. Generation of quantum correlated photon pairs by using third-order nonlinearity in optical fibers[J]. Acta Optica Sinica, 42, 0327011(2022).

    [17] Dong M X, Zhang W, Shi S et al. Two-color hyper-entangled photon pairs generation in a cold 85Rb atomic ensemble[J]. Optics Express, 25, 10145-10152(2017).

    [18] Wang Z Y, Rasmita A, Long G K et al. Optically driven giant superbunching from a single perovskite quantum dot[J]. Advanced Optical Materials, 9, 2100879(2021).

    [19] Rácz É, Spasibko K, Manceau M et al. Quantitative analysis of the intensity distribution of optical rogue waves[J]. Communications Physics, 7, 119(2024).

    [20] Jiang L, Song R, Hou J et al. Research progress of high-power visible to near-infrared supercontinuum source[J]. Acta Optica Sinica, 43, 1719001(2023).

    [21] Qi X, Chen S P, Li Z H et al. High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm[J]. Optics Letters, 43, 1019-1022(2018).

    [22] Guo Y Q, Wang L J, Wang Y et al. Analysis and measurement of high-order photon correlations of light fields[J]. Acta Physica Sinica, 69, 174204(2020).

    [23] Gerry C, Knight P[M]. Introductory quantum optics, 294-297(2004).

    [24] Chen Y W. Development of ultra-wideband and high flatness all optical fiber supercontinuum light source equipment[D], 55-56(2017).

    Yu Yan, Jiamin Li, Jiang Qiu, Zihua Liu, Shuangping Han, Yanqiang Guo, Chengbing Qin, Liantuan Xiao. Preparation of Ultra-Strong Photon Correlation Light Field in Optical Communication Band[J]. Acta Optica Sinica (Online), 2024, 1(6): 0608001
    Download Citation