• Optics and Precision Engineering
  • Vol. 27, Issue 3, 645 (2019)
LI Yong-qian1,2,*, YU Yang1,2, and SU Lei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/ope.20192703.0645 Cite this Article
    LI Yong-qian, YU Yang, SU Lei. Development and applications of plasmonics electromagnetic wave absorbers[J]. Optics and Precision Engineering, 2019, 27(3): 645 Copy Citation Text show less
    References

    [1] GARC A DE ABAJO F J. Colloquium: light scattering by particle and hole arrays [J]. Reviews of Modern Physics, 2007, 79(4): 1267-1290.

    [2] LIU Y, ZHANG X. Metamaterials: a new frontier of science and technology [J]. Chem Soc Rev, 2011, 40(5): 2494-2507.

    [3] OGAWA S, FUJISAWA D, HATA H, et al.. Absorption properties of simply fabricated all-metal mushroom plasmonic metamaterials incorporating tube-shaped posts for multi-color uncooled infrared image sensor applications [J]. Photonics, 2016, 3(1): 9-16.

    [4] DAO T D, ISHII S, YOKOYAMA T, et al.. Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors [J]. Acs Photonics, 2016, 3(7): 1271-1278.

    [5] ALTUG H. Nano-optics: Principles Enabling Basic Research and Applications [M]. Dordrecht: Springer, 2017.

    [6] LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber [J]. Phys Rev Lett, 2008, 100(20): 207402.

    [7] LI Y Q, WANG B B, SU L, et al.. Analytic model of optical constants for infrared absorption material with nanostructure [J]. Acta Optica Sinica, 2013, 33(12): 1216002-08. (in Chinese)

    [8] WATTS C M, LIU X, PADILLA W J. Metamaterial electromagnetic wave absorbers [J]. Adv Mater, 2012, 24(23): 98-120.

    [9] OGAWA S, KIMATA M. Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review [J]. Materials (Basel), 2018, 11(3): 458-475.

    [10] CUI Y X, HE Y R, JIN Y, et al.. Plasmonic and metamaterial structures as electromagnetic absorbers [J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.

    [11] TAO H, BINGHAM C M, STRIKWERDA A C, et al.. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization [J]. Physical Review B, 2008, 78(24): 241103.

    [12] WEN Q Y, ZHANG H W, XIE Y S, et al.. Dual band terahertz metamaterial absorber: design, fabrication, and characterization [J]. Applied Physics Letters, 2009, 95(24): 241111.

    [13] ALICI K B, TURHAN A B, SOUKOULIS C M, et al.. Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration [J]. Opt Express, 2011, 19(15): 14260-14267.

    [14] LIU Y Y, XIONG G, WANG Y, et al.. Design of multi resonant U shaped slots nano-antenna and their absorption properties [J]. Opt. Precision Eng., 2017, 25(8): 2155-2164. (in Chinese)

    [15] MA Y, CHEN Q, GRANT J, et al.. A terahertz polarization insensitive dual band metamaterial absorber [J]. Opt Lett, 2011, 36(6): 945-947.

    [16] WANG L, HU C D, WU X X, et al.. Multi-band metamaterial absorber with arbitrary polarization and wide-incident angle [J]. Applied Physics a-Materials Science & Processing, 2017, 123(10): 651.

    [17] HUANG X J, YANG H L, YU S Q, et al.. Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber [J]. Journal of Applied Physics, 2013, 113(21): 213516.

    [18] LEE H M, WU J C. A wide-angle dual-band infrared perfect absorber based on metal-dielectric-metal split square-ring and square array [J]. Journal of Physics D-Applied Physics, 2012, 45(20): 205101.

    [19] WANG J, CHEN Y T, HAO J M, et al.. Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared [J]. Journal of Applied Physics, 2011, 109(7): 074510.

    [20] HAO J M, WANG J, LIU X L, et al.. High performance optical absorber based on a plasmonic metamaterial [J]. Applied Physics Letters, 2010, 96(25): 251104.

    [21] HAO J M, ZHOU L, QIU M. Nearly total absorption of light and heat generation by plasmonic metamaterials [J]. Physical Review B, 2011, 83(16): 165107.

    [22] USTUN K, TURHAN-SAYAN G. Wide bandwidth absorption in the mwir region using a thin and simple metamaterial absorber [C]. 2017 Iv International Electromagnetic Compatibility Conference, Turkiye, 2017: 1-4.

    [23] LEI L, LI S, HUANG H, et al.. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial [J]. Opt Express, 2018, 26(5): 5686-5693.

    [24] ZHANG Z, YU Z, LIANG Y, et al.. Dual-band nearly perfect absorber at visible frequencies [J]. Optical Materials Express, 2018, 8(2): 463.

    [25] LIU X, STARR T, STARR A F, et al.. Infrared spatial and frequency selective metamaterial with near-unity absorbance [J]. Phys Rev Lett, 2010, 104(20): 207403.

    [26] GRANT J, KENNEY M, SHAH Y D, et al.. CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications [J]. Opt Express, 2018, 26(8): 10408-10420.

    [27] WANG B X, WANG G Z, SANG T. Simple design of novel triple-band terahertz metamaterial absorber for sensing application [J]. Journal of Physics D: Applied Physics, 2016, 49(16): 165307.

    [28] GRANT J, MA Y, SAHA S, et al.. Polarization insensitive terahertz metamaterial absorber [J]. Opt Lett, 2011, 36(8): 1524-1526.

    [29] CHENG H, CHEN S Q, YANG H F, et al.. A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime [J]. Journal of Optics, 2012, 14(8): 085102.

    [30] KONG H, LI G F, JIN Z M, et al.. Polarization-independent metamaterial absorber for terahertz frequency [J]. Journal of Infrared Millimeter And Terahertz Waves, 2012, 33(6): 649-656.

    [31] CHEN J F, HU Z Y, WANG S M, et al.. A triple-band, polarization-and incident angle-independent microwave metamaterial absorber with interference theory [J]. European Physical Journal B, 2016, 89(1): 14-22.

    [32] AZAD A K, KORT-KAMP W J, SYKORA M, et al.. Metasurface broadband solar absorber [J]. Sci Rep, 2016, 6: 20347.

    [33] HUANG X T, LU C H, RONG C C, et al.. Wide angle of incidence-insensitive polarization-independent thz metamaterial absorber for both te and tm mode based on plasmon hybridizations [J]. Materials (Basel), 2018, 11(5): 671-682.

    [34] TAO H, STRIKWERDA A C, FAN K, et al.. Reconfigurable terahertz metamaterials [J]. Phys Rev Lett, 2009, 103(14): 147401.

    [35] PITCHAPPA P, MANJAPPA M, HO C P, et al.. Active control of electromagnetically induced transparency analog in terahertz mems metamaterial [J]. Advanced Optical Materials, 2016, 4(4): 541-547.

    [36] WANG R, LI L, LIU J, et al.. Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal [J]. Optics Express, 2017, 25(26): 32280.

    [37] CHEN H T, PADILLA W J, ZIDE J M, et al.. Active terahertz metamaterial devices [J]. Nature, 2006, 444(7119): 597-600.

    [38] MA B, LIU S, KONG X, et al.. A novel wide-band tunable metamaterial absorber based on varactor diode/graphene [J]. Optik-International Journal for Light and Electron Optics, 2016, 127(5): 3039-3043.

    [39] ZHAO Y T, WU B, HUANG B J, et al.. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface [J]. Opt Express, 2017, 25(7): 7161-7169.

    [40] KIM H K, LEE D, LIM S. Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator [J]. Applied Optics, 2016, 55(15): 4113.

    [41] PUSCASU I, SCHAICH W L. Narrow-band, tunable infrared emission from arrays of microstrip patches [J]. Applied Physics Letters, 2008, 92(23): 233102.

    [42] LIU X, TYLER T, STARR T, et al.. Taming the blackbody with infrared metamaterials as selective thermal emitters [J]. Phys Rev Lett, 2011, 107(4): 045901.

    [43] LIU B, GONG W, YU B, et al.. Perfect thermal emission by nanoscale transmission line resonators [J]. Nano Lett, 2017, 17(2): 666-672.

    [44] LIU N, MESCH M, WEISS T, et al.. Infrared perfect absorber and its application as plasmonic sensor [J]. Nano Lett, 2010, 10(7): 2342-2348.

    [45] CHEN K, ADATO R, ALTUG H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy [J]. ACS Nano, 2012, 6(9): 7998-8006.

    [46] CETIN A E, KORKMAZ S, DURMAZ H, et al.. Quantification of multiple molecular fingerprints by dual-resonant perfect absorber [J]. Advanced Optical Materials, 2016, 4(8): 1274-1280.

    [47] LI Y Q, SU L, MAN L, et al.. Optofluidic waveguides and their applications to biological sensors [J]. Opt. Precision Eng., 2013, 21(4): 987-999. (in Chinese)

    [48] Trtica M S, Gakovic B M, Radak B B, et al.. Material surface modification by ns, ps and fs laser pulses[J]. Opt. Precision Eng., 2011, 19(2): 221-227.

    [49] ATWATER H A, POLMAN A. Plasmonics for improved photovoltaic devices [J]. Nat Mater, 2010, 9(3): 205-213.

    [50] HAGGLUND C, APELL S P. Plasmonic near-field absorbers for ultrathin solar cells [J]. J Phys Chem Lett, 2012, 3(10): 1275-1285.

    [51] AYDIN K, FERRY V E, BRIGGS R M, et al.. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J]. Nat Commun, 2011, 1(11): 517-523.

    [52] WANG W, QU Y, DU K, et al.. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals [J]. Applied Physics Letters, 2017, 110(10): 101101.

    [53] TITTL A, MICHEL A K, SCHAFERLING M, et al.. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability [J]. Adv Mater, 2015, 27(31): 4597-4603.

    [54] CHEN X, CHEN Y, YAN M, et al.. Nanosecond photothermal effects in plasmonic nanostructures [J]. ACS Nano, 2012, 6(3): 2550-2557.

    [55] GUILLOT N, DE LA CHAPELLE M L. Lithographied nanostructures as nanosensors [J]. Journal of Nanophotonics, 2012, 6(1): 064506.

    [56] TRAUB M C, LONGSINE W, TRUSKETT V N. Advances in nanoimprint lithography [J]. Annu Rev Chem Biomol Eng, 2016, 7: 583-604.

    [57] LEE Y K, LEE H, LEE C, et al.. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes [J]. J Phys Condens Matter, 2016, 28(25): 254006.

    [58] GUO N, HU W, JIANG T, et al.. High-quality infrared imaging with graphene photodetectors at room temperature [J]. Nanoscale, 2016, 8(35): 16065-16072.

    [59] LUNDEBERG M B, GAO Y, WOESSNER A, et al.. Thermoelectric detection and imaging of propagating graphene plasmons [J]. Nat Mater, 2017, 16(2): 204-207.

    [60] GUO Q, LI C, DENG B, et al.. Infrared nanophotonics based on graphene plasmonics [J]. ACS Photonics, 2017, 4(12): 2989-2999.

    [61] LOW T, AVOURIS P. Graphene plasmonics for terahertz to mid-infrared applications [J]. ACS Nano, 2014, 8(2): 1086-1101.

    [62] LI W, VALENTINE J G. Harvesting the loss: surface plasmon-based hot electron photodetection [J]. Nanophotonics, 2017, 6(1): 177-191.

    [63] NG C, CADUSCH J J, DLIGATCH S, et al.. Hot carrier extraction with plasmonic broadband absorbers [J]. ACS Nano, 2016, 10(4): 4704-4711.

    [64] LEE W R, NAVARRETE J, EVANKO B, et al.. A plasmonic liquid junction photovoltaic cell with greatly improved power conversion efficiency [J]. Chem Commun (Camb), 2016, 52(92): 13460-13462.

    [65] SAKHDARI M, HAJIZADEGAN M, FARHAT M, et al.. Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials [J]. Nano Energy, 2016, 26: 371-381.

    [66] HO Y L, TAI Y H, CLARK J K, et al.. Plasmonic hot-carriers in channel-coupled nanogap structure for metal-semiconductor barrier modulation and spectral-selective plasmonic monitoring [J]. ACS Photonics, 2018, 5(7): 2617-2623.

    LI Yong-qian, YU Yang, SU Lei. Development and applications of plasmonics electromagnetic wave absorbers[J]. Optics and Precision Engineering, 2019, 27(3): 645
    Download Citation