[1] GLEICK P H. A look at twenty-first century water resources development[J]. Water Int, 2000, 25(1): 127-138.
[2] PI Y H, LI X Y, QI B, et al. Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs)[J]. Chem Eng J, 2017: 351-371.
[4] ZHANG Z F, DONG Y, LIU G Y, et al. The ultrafine monolayer 1T/2H-MoS2: Preparation, characterization and amazing photocatalytic characteristics[J]. Collo Surf A, 2020, 589:124431.
[5] SOKOLIKOVA M S, MATTEVI C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides[J]. Chem Soc Rev, 2020, 49(12): 3952-3980.
[6] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11):699-712.
[7] LIU D B, XU W Y, LIU Q, et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application[J]. Nano Research, 2016, 9: 2079-2087.
[8] IMTIAZ M, CHEN Z X, ZHU Chengling, et al. Three-dimensional aerogel based on in-situ growth of 1T-MoS2 on functionalized hierarchical porous carbon/reduced graphene oxide for energy storage[J]. Appl Surf Sci, 2019, 506: 144811.
[9] EDA G, FUJITA T, YAMAGUCHI H, et al. Coherent atomic and electronic heterostructures of single-layer MoS2[J]. ACS Nano, 2012, 6(8): 7311.
[10] JAYABAL S, WU J, CHEN J, et al. Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties and emerging applications[J]. Mater Today Energy, 2018, 10: 264-279.
[11] LUKOWSKI M A, DANIEL A S, FEI M, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. J Am Chem Soc, 2013, 135 (28): 10274-7.
[12] VOIRY D A, SALEHI M, SILVA R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction[J]. Nano Lett, 2013, 13(12): 6222-6227.
[13] HAN H S, KIM K M, LEE C W, et al. Few-layered metallic 1T-MoS2/TiO2 with exposed (001) facets: Two-dimensional nanocomposites for enhanced photocatalytic activities[J]. Phys Chem Chem Phys, 2017, 19(41): 28207-28215.
[14] ZHANG X, LAI Z C, TAN C L, et al. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications[J]. Angew Chem Int Ed, 2016, 55: 8816-38.
[15] LIANG Z, SHEN R, YUN H N, et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production[J]. J Mater Sci Technol, 2020, 56: 89-121.
[16] ZHAO W, PAN J, FANG Y Q, et al. Metastable MoS2: Crystal structure, electronic band structure, synthetic approach and intriguing physical properties[J]. Chem Eur J, 2018, 24(60): 15942-15954.
[17] SHI S L, SUN Z X, HU Y H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2[J]. J Mater Chem A, 2018, 6: 239232.
[18] HE Z L, QUE W X. Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction[J]. Appl Mater Today, 2016, 3: 23-56.
[19] LIU Q, LI X L, HE Q, et al. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution[J]. Small, 2015, 11(41): 5556-5564.
[20] LIN Y C, DUMCENCO D O, HUANG Y S, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2[J]. Nat Nanotechnol. 2014, 9(5): 391.
[21] BESSONOV A A, KIRIKOVA M N, PETUKHOV D I, et al. Layered memristive and memcapacitive switches for printable electronics[J]. Nat Mater, 2014, 14(2): 199.
[22] WYPYCH F, SCHOLLHOM R. 1T-MoS2, a new metallic modification of molybdenum disulfide[J]. J Chem Soc Chem Comm, 1992, 19: 1386.
[23] TAO Y Q, XIA Z H, PAN Z G, et al. Enhanced photocatalytic performance and stability of 1T MoS2 transformed from 2H MoS2 via Li intercalation[J]. Results Phys, 2019, 12: 2218-2224.
[24] LEI Z D, ZHAN J, TANG L, et al. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage[J]. Adv Energy Mater, 2018, 8(19): 1703482.1-1703482.29.
[25] EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Lett, 2011, 11(12): 5111-5116.
[26] WANG J, WANG N, GUO Y Z, et al. Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution[J], ACS Sustain Chem Eng 2018, 6(10): 13435-13442.
[27] LI G Q, ZHANG D, QIAO Q, et al. All the catalytic active sites of MoS2 for hydrogen evolution[J]. J Am Chem Soc, 2016, 138(51): 16632-16638.
[28] ZHENG J, ZHANG H, DONG S H, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nat Commun, 2014, 5: 2995.
[29] GENG X M, SUN W W, WU W, et al. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction[J]. Nat Commun, 2016, 7: 10672.
[30] ZHAO W, LIU X, YANG X R, et al. Synthesis of novel 1T/2H-MoS2 from MoO3 nanowires with enhanced photocatalytic performance[J]. Nanomaterials, 2020, 10(6): 1124.
[31] LI Y H, CHANG K, SUN Z T, et al. Selective preparation of 1T-and 2H-phase MoS2 nanosheets with abundant monolayer structure and their applications in energy storage devices[J]. ACS Appl Energy Mater, 2019, 3: 998-1009.
[32] HU Y S, ZENG X B, REN T T, et al. Preparation of controllable-thickness 1T@2H-MoS2 thin films by pulsed laser-induced synthesis and the selective separation of the 1T phase[J]. J Mater Chem C, 2018, 6(43): 11651-11658.
[33] DENG J, LI H B, XIAO J P, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy Environ Sci, 2015, 8(5): 1594-1601.
[34] LI H, TSAI C, KOH A L, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nat Mater, 2016, 15(1): 48-53.
[35] DING Q, MENG F, ENGLISH C R, et al. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2[J]. J Am Chem Soc, 2014, 136(24): 8504-7.
[36] JIA W, ZHOU X, HUANG Y D, et al. Cover feature: Synthesis of air-stable 1T phase of molybdenum disulfide for efficient electrocatalytic hydrogen evolution[J]. Chem Cat Chem, 2019, 11(2): 637-637.
[37] JIMENEZ SANDOVAL S, YANG D, FRINDT R, et al. Raman study and lattice dynamics of single molecular layers of MoS2[J]. Phys Rev B Condens Matter, 1991, 44(8): 3955.
[38] HE H Y, HE Z, SHEN Q. Efficient hydrogen evolution catalytic activity of graphene/metallic MoS2 nanosheet heterostructures synthesized by a one-step hydrothermal process[J]. Int J Hydrogen Energ, 2018, 43(48): 21835-21843.
[39] HU X Y, ZENG X K, LIU Y, et al. Nano-layer based 1T-rich MoS2/g-C3N4 co-catalyst system for enhanced photocatalytic and photoelectrochemical activity[J]. Appl Catal B, 2020, 268: 118466.
[40] XIN X, SONG Y R, GUO S H, et al. In-situ growth of high-content 1T phase MoS2 confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution[J]. Appl Catal B, 2020, 269: 118773.
[41] MAO Q, CHEN J M, CHEN H R, et al. Few-layered 1T-MoS2-modified ZnCoS solid-solution hollow dodecahedra for enhanced photocatalytic hydrogen evolution[J]. J Mater Chem A, 2019, 7: 8472-8484.
[42] LIAN Z Q, LIU Y C, LIU H, et al. Fabrication of CdS@1T-MoS2 core-shell nanostructure for enhanced visible-light-driven photocatalytic H2 evolution from water splitting[J]. J Taiwan Inst Chem E, 2019, 105: 57-64.
[43] ZHANG Y X, KUWAHARA Y, MORI K, et al. Construct of hybrid MoS2 phase coupled with SiC heterojunctions with promoted photocatalytic activity for 4-nitrophenol degradation[J]. Langmuir, 2020, 36(5): 1174-1182.
[44] ZHAO Y, ZHANG X, WANG T, et al. Fabrication of rGO/CdS@2H, 1T, amorphous MoS2 heterostructure for enhanced photocatalytic and electrocatalytic activity[J]. Int J Hydrog Energy, 2020, 45(41): 21409-21421.
[45] QU Y Q, DUAN X F. Progress, challenge and perspective of heterogeneous photocatalysts[J]. Chem Soc Rev, 2013, 42(7): 2568-2580.
[46] XU X Y, PAN L, HAN Q T, et al. Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic hydrogen evolution[J]. J Catal, 2019, 374: 237-245.
[47] PRAMODA K, GUPTA U, CHHETRI M, et al. Nanocomposites of C3N4 with layers of MoS2 and nitrogenated RGO, obtained by covalent cross-linking: synthesis, characterization, and HER activity[J]. ACS Appl Mater Interfaces, 2017, 9: 10664-10672.
[48] MAITRA U, GUPTA U, DE M, et al. Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene[J]. Angew Chem Int Ed, 2013, 52(49): 13057-13061.
[49] ZHAO W, CHEN Z, YANG X R, et al. Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals[J]. Renew Sust Energ Rev, 2020, 132: 110040.
[50] BAI S, WANG L M, CHEN X Y, et al. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals[J]. Nano Research 2015, 8(001): 175-183.
[51] ZHAO W, YANG X R, LIU C X, et al. Facile construction of all-solid-state Z-scheme g-C3N4/TiO2 thin film for the efficient visible-light degradation of organic pollutant[J]. Nanomaterials, 2020, 10(4): 600.
[52] CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. B Environ Contam Tox, 1976, 16(6): 697-701.
[53] HAN H S, KIM K M, LEE C W, et al. Few-layered metallic 1T-MoS2/TiO2 with exposed (001) facets: Two-dimensional nanocomposites for enhanced photocatalytic activities[J]. Phys Chem Chem Phys, 2017, 19: 28207-28215.
[54] YANG X R, CHEN Z, ZHAO W, et al. Recent advances in photodegradation of antibiotic residues in water[J]. Chem. Eng. J., 2020, 405: 126806.