• Advanced Photonics Nexus
  • Vol. 2, Issue 2, 026009 (2023)
Han Cao1、2, Guangyao Wang1, Lichao Zhang2, Qinggui Tan3, Wei Duan4、*, and Wei Hu1、*
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing, China
  • 2Nanhui Institute of Intelligent Optical Sensing and Manipulation, Nanjing, China
  • 3China Academy of Space Technology, National Key Laboratory of Science and Technology on Space Microwave, Xi’an, China
  • 4Beihang University, School of Instrumentation and Optoelectronic Engineering, Beijing, China
  • show less
    DOI: 10.1117/1.APN.2.2.026009 Cite this Article Set citation alerts
    Han Cao, Guangyao Wang, Lichao Zhang, Qinggui Tan, Wei Duan, Wei Hu. Reflective optical vortex generators with ultrabroadband self-phase compensation[J]. Advanced Photonics Nexus, 2023, 2(2): 026009 Copy Citation Text show less
    References

    [1] H. Huang et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett., 39, 197-200(2014).

    [2] L. Allen et al. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser mode. Phys. Rev. A, 45, 8185-8189(1992).

    [3] Y. Yan et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun., 5, 4876(2014).

    [4] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [5] Y. J. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [6] S. Slussarenko et al. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express, 19, 4085-4090(2011).

    [7] T. Lei et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [8] L. L. Huang et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [9] G. X. Li et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett., 13, 4148-4151(2013).

    [10] Y. Q. Hu et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Lett., 21, 4554-4562(2021).

    [11] B. Y. Wei et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater., 26, 1590-1595(2014).

    [12] Z. C. Zhang, Z. You, D. P. Chu. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci. Appl., 3, e213(2014).

    [13] P. Chen et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv. Mater., 32, 1903665(2020).

    [14] R. Yuan et al. Spin-decoupled transflective spatial light modulations enabled by a piecewise-twisted anisotropic monolayer. Adv. Sci., 9, 2202424(2022).

    [15] Q. M. Chen et al. Helical structure endows liquid crystal planar optics with a customizable working band. Adv. Quantum Technol., 6, 2200153(2023).

    [16] C. Oh, M. J. Escuti. Achromatic diffraction from polarization gratings with high efficiency. Opt. Lett., 33, 2287-2289(2008).

    [17] J. Y. Zou et al. Broadband wide-view Pancharatnam–Berry phase deflector. Opt. Express, 28, 4921-4927(2020).

    [18] W. Chen et al. Super-broadband geometric phase devices based on circular polarization converter with mirror symmetry. Appl. Phys. Lett., 119, 101103(2021).

    [19] R. Barboza et al. Berry phase of light under Bragg reflection by chiral liquid-crystal media. Phys. Rev. Lett., 117, 053903(2016).

    [20] M. Rafayelyan, E. Brasselet. Bragg–Berry mirrors: reflective broadband q-plates. Opt. Lett., 41, 3972-3975(2016).

    [21] J. Kobashi, H. Yoshida, M. Ozaki. Planar optics with patterned chiral liquid crystals. Nat. Photonics, 10, 389-392(2016).

    [22] M. Rafayelyan, E. Brasselet. Spin-to-orbital angular momentum mapping of polychromatic light. Phys. Rev. Lett., 120, 213903(2018).

    [23] P. Chen et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).

    [24] C. T. Xu et al. Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures. Appl. Phys. Lett., 118, 151102(2021).

    [25] C. T. Xu et al. Heliconical cholesterics endows spatial phase modulator with an electrically customizable working band. Adv. Opt. Mater., 10, 2201088(2022).

    [26] P. Yeh, C. Gu. Optics of Liquid Crystal Displays(1999).

    [27] V. Chigrinov et al. Synthesis and properties of azo dye aligning layers for liquid crystal cells. Liq. Cryst., 29, 1321-1327(2002).

    [28] V. Denisenko et al. Determination of topological charges of polychromatic optical vortices. Opt. Express, 17, 23374-23379(2009).

    [29] P. Chen et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. Photonics Res., 3, 133-139(2015).

    [30] Y. J. Shen et al. Measures of space-time nonseparability of electromagnetic pulses. Phys. Rev. Res., 3, 013236(2021).

    [31] A. Zdagkas et al. Observation of toroidal pulses of light. Nat. Photonics, 16, 523-528(2022).

    [32] Z. S. Wan et al. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications. Light Sci. Appl., 11, 144(2022).

    [33] C. He et al. Towards higher-dimensional structured light. Light Sci. Appl., 11, 205(2022).

    Han Cao, Guangyao Wang, Lichao Zhang, Qinggui Tan, Wei Duan, Wei Hu. Reflective optical vortex generators with ultrabroadband self-phase compensation[J]. Advanced Photonics Nexus, 2023, 2(2): 026009
    Download Citation