[1] CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J]. Nature Photon, 2018, 12(11): 681-687.
[2] WORKU M, TIAN Y, ZHOU C K, et al. Hollow metal halide perovskite nanocrystals with efficient blue emissions[J]. Sci Adv, 2020, 6(17): eaaz5961.
[3] LIU M M, WAN Q, WANG H M, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J]. Nat Photonics, 2021, 15: 379-385.
[5] LI P P, XIE W Q, MAO W, et al. Luminescence enhancement of CsPbBr3 quantum dot glasses induced by two unexpected methods: Mechanical and hydration crystallization[J]. J Mater Chem C, 2020, 8(2): 473-480.
[6] SMOCK S R, CHEN Y H, ROSSINI A J, et al. The surface chemistry and structure of colloidal lead halide perovskite nanocrystals[J]. Acc Chem Res, 2021, 54(3): 707-718.
[7] CHEN K Q, WANG C, PENG Z Y, et al. The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite[J]. Coord Chem Rev, 2020, 418: 213333.
[8] BAI S, YUAN Z C, GAO F. Colloidal metal halide perovskite nanocrystals: Synthesis, characterization, and applications[J]. J Mater Chem C, 2016, 4(18): 3898-3904.
[9] YANG D D, LI X M, ZENG H B. Surface chemistry of all inorganic halide perovskite nanocrystals: Passivation mechanism and stability[J]. Adv Materials Inter, 2018, 5(8): 1701662.
[10] WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display[J]. Angew Chem Int Ed, 2016, 55(28): 7924-7929.
[11] AHMED G H, YIN J, BAKR O M, et al. Successes and challenges of core/shell lead halide perovskite nanocrystals[J]. ACS Energy Lett, 2021, 6(4): 1340-1357.
[12] WANG X C, BAO Z, CHANG Y C, et al. Perovskite quantum dots for application in high color gamut backlighting display of light-emitting diodes[J]. ACS Energy Lett, 2020, 5(11): 3374-3396.
[13] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbXࠣ, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15(6): 3692-3696.
[14] LIU S J, HE M L, DI X X, et al. Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3, X = Br, I) QDs in borosilicate glass[J]. Ceram Int, 2018, 44(4): 4496-4499.
[15] PANG X L, ZHANG X J, LEI B F, et al. Precipitating tunable-emission CsPb(Cl/Br)3 QDs in bro-germanate glass for wide-color-gamut liquid crystal displays[J]. J. Inf. Disp, 2019, 20(4): 193-200.
[16] SUN K, TAN D Z, FANG X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022, 375(6578): 307-310.
[17] WANG D Z, QIU J B, ZHOU D C, et al. Lithium doping induced self-crystallization of CsPbBr3 nanocrystal glass with improved quantum yield and stability[J]. Chem Eng J, 2021, 421: 127777.
[18] CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping[J]. Nanoscale, 2019, 11(37): 17216-17221.
[19] LI P P, LU Y, DUAN Y M, et al. Potential application of perovskite glass material in photocatalysis field[J]. J Phys Chem C, 2021, 125(4): 2382-2392.
[20] LIN C G, CHEN D, WENG K B, et al. Glassy flux protocol to confine lead-free CsSnX3 nanocrystals into transparent solid medium[J]. J Phys Chem Lett, 2020, 11(15): 6084-6089.
[21] SHAO X, WANG J, HAN J J, et al. Growth kinetics and optical properties of PbSe quantum dots in dual-phase lithium-aluminum- silicate glass ceramic[J]. J Eur Ceram Soc, 2020, 40(12): 4122-4128.
[22] CHEN S X, LIN J D, HUANG J, et al. CsPbBr3@glass nanocomposite with green-emitting external quantum efficiency of 75% for backlit display[J]. Adv. Funct. Mater., 2024, 34(2): 2309293.
[23] WANG Y K, LIU X Y, HE Q Q, et al. Reversible transformation between CsPbBr3 perovskite nanowires and nanorods with polarized optoelectronic properties[J]. Adv Funct Materials, 2021, 31(22): 2011251.
[24] AI B, LIU C, DENG Z, et al. Low temperature photoluminescence properties of CsPbBr3 quantum dots embedded in glasses[J]. Phys Chem Chem Phys, 2017, 19(26): 17349-17355.
[25] SUN K, TAN D Z, SONG J, et al. Highly emissive deep-red perovskite quantum dots in glass: Photoinduced thermal engineering and applications[J]. Adv Opt Mater, 2021, 9(11): 2100094.
[26] ZHOU Y, LIU C, ZHAO Z Y, et al. Enhanced luminescence of Mn doped CsPbCl3 and CsPb(Cl/Br)3 perovskite nanocrystals stabilized in glasses[J]. J Alloys Compd, 2020, 827: 154349.
[27] XU Z S, CHEN T, XIA J Z, et al. Effect of ZnO on the crystallization and photoluminescence of CsPbI3 perovskite quantum dots in borosilicate glasses[J]. J Am Ceram Soc, 2022, 105(5): 3303-3311.
[28] ZHANG X Z, GUO L Z, ZHANG Y H, et al. Improved photoluminescence quantum yield of CsPbBr3 quantum dots glass ceramics[J]. J Am Ceram Soc, 2020, 103(9): 5028-5035.
[29] YANG B B, ZHENG F, MEI S L, et al. Component regulation and crystallization mechanism of CsPbBr3/Cs4PbBr6 perovskite composite quantum dots-embedded borosilicate glass for light emitting application[J]. Appl Surf Sci, 2020, 512: 145655.
[30] HUANG S Q, LI Z C, WANG B, et al. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination[J]. ACS Appl Mater Interfaces, 2017, 9(8): 7249-7258.
[31] YE Y, ZHANG W C, ZHAO Z Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications[J]. Adv Opt Mater, 2019, 7(9): 1801663.
[32] CHOI J W, CHO N, WOO H C, et al. Investigation of high contrast and reversible luminescence thermochromism of the quantum confined Cs4PbBr6 perovskite solid[J]. Nanoscale, 2019, 11(12): 5754-5759.