• Semiconductor Optoelectronics
  • Vol. 42, Issue 1, 1 (2021)
TAO Yuansheng1, WANG Xingjun1,2,3,*, and HU Weiwei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2021.01.001 Cite this Article
    TAO Yuansheng, WANG Xingjun, HU Weiwei. Recent Progresses of Silicon Integrated Microwave Photonic Filters[J]. Semiconductor Optoelectronics, 2021, 42(1): 1 Copy Citation Text show less
    References

    [1] Yao J. Photonics to the rescue: A fresh look at microwave photonic filters[J]. IEEE Microwave Magazine, 2015, 16(8): 46-60.

    [2] Capmany J, Mora J, Gasulla I, et al. Microwave photonic signal processing[J]. J. of Lightwave Technol., 2012, 31(4): 571-586.

    [4] Rasras M S, Tu K Y, Gill D M, et al. Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators[J]. J. of Lightwave Technol., 2009, 27(12): 2105-2110.

    [5] Norberg E J, Guzzon R S, Nicholes S C, et al. Programmable photonic lattice filters in InGaAsP-InP[J]. IEEE Photon. Technol. Lett., 2009, 22(2): 109-111.

    [6] Norberg E J, Guzzon R S, Parker J S, et al. Programmable photonic microwave filters monolithically integrated in InP-InGaAsP[J]. J. of Lightwave Technol., 2011, 29(11): 1611-1619.

    [7] Fandino J S, Munoz P, Domenech D, et al. A monolithic integrated photonic microwave filter[J]. Nature Photon., 2017, 11(2): 124-129.

    [8] Marpaung D, Yao J, Capmany J. Integrated microwave photonics[J]. Nature Photon., 2019, 13(2): 80-90.

    [9] Wang X, Liu J. Emerging technologies in Si active photonics[J]. J. of Semiconductors, 2018, 39(6): 061001.

    [10] Zhang W, Yao J. Silicon-based integrated microwave photonics[J]. IEEE J. of Quantum Electron., 2015, 52(1): 1-12.

    [11] Liu Y, Choudhary A, Marpaung D, et al. Integrated microwave photonic filters[J]. Advances in Opt. and Photon., 2020, 12(2): 485-555.

    [12] Oppenheim A V, Buck J R, Schafer R W. Discrete-Time Signal Processing[M]. Upper Saddle River, NJ: Prentice Hall, 2001.

    [13] Capmany J, Ortega B, Pastor D, et al. Discrete-time optical processing of microwave signals[J]. J. of Lightwave Technol., 2005, 23(2): 702-723.

    [14] Zhang W, Yu G. Tap multiplexed fibre grating-based optical transversal filter[J]. Electron. Lett., 2000, 36(20): 1708-1710.

    [15] Burla M, Marpaung D, Zhuang L, et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing[J]. Opt. Express, 2011, 19(22): 21475-21484.

    [16] Morichetti F, Melloni A, Martinelli M, et al. Box-shaped dielectric waveguides: A new concept in integrated optics?[J]. J. of Lightwave Technol., 2007, 25(9): 2579-2589.

    [17] Wang J, Ashrafi R, Adams R, et al. Subwavelength grating enabled on-chip ultra-compact optical true time delay line[J]. Scientific Reports, 2016, 6: 30235.

    [18] Liao S, Ding Y, Dong J, et al. Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper[J]. Opt. Express, 2015, 23(9): 12161-12173.

    [19] Xue X, Xuan Y, Kim H J, et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring[J]. J. of Lightwave Technol., 2014, 32(20): 3557-3565.

    [20] Shu H, Tao Y, Xie W, et al. Ultra-efficient RF photonics filter based on an AlGaAs-on-insulator integrated Kerr frequency comb source[C]// Proc. of CLEO: Science and Innovations. Optical Society of America, 2020: SF1O.2.

    [21] Chang L, Xie W, Shu H, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Communications, 2020, 11(1): 1-8.

    [22] Metcalf A J, Kim H J, Leaird D E, et al. Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering[J]. Opt. Express, 2016, 24(21): 23925-2394.

    [23] Zheng S, Long Y, Gao D, et al. Chip-scale reconfigurable optical full-field manipulation: enabling a compact grooming photonic signal processor[J]. ACS Photon., 2020, 7(5): 1235-1245.

    [24] Sancho J, Bourderionnet J, Lloret J, et al. Integrable microwave filter based on a photonic crystal delay line[J]. Nature Commun., 2012, 3(1): 1-9.

    [25] Chen G F R, Wang T, Donnelly C, et al. Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings[J]. Opt. Express, 2013, 21(24): 29223-29230.

    [26] Mia M B, Jaidye N. Extremely high dispersions in heterogeneously coupled waveguides[J]. Opt. Express, 2019, 27(8): 10426-10437.

    [27] Palaci J, Villanueva G E, Galan J V, et al. Single bandpass photonic microwave filter based on a notch ring resonator[J]. IEEE Photon. Technol. Lett., 2010, 22(17): 1276-1278.

    [28] Li W, Li M, Yao J. A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating[J]. IEEE Trans. on Microwave Theory and Techniques, 2012, 60(5): 1287-1296.

    [29] Liu Li, Yang Ting, Dong Jianji. Microwave photonic filter with a continuously tunable central frequency using an SOI high-Q microdisk resonator[J]. Chinese Physics B, 2014, 23(9): 093201.

    [30] Liu L, Jiang F, Yan S, et al. Photonic measurement of microwave frequency using a silicon microdisk resonator[J]. Opt. Commun., 2015, 335: 266-270.

    [31] Marpaung D, Morrison B, Pant R, et al. Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection[J]. Opt. Express, 2013, 21(20): 23286-23294.

    [32] Qiu H, Zhou F, Qie J, et al. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator[J]. J. of Lightwave Technol., 2018, 36(19): 4312-4318.

    [33] Zhang Y, Hu X, Chen D, et al. Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide[J]. Opt. Lett., 2018, 43(7): 1586-1589.

    [34] Zhang L, Jie L, Zhang M, et al. Ultrahigh-Q silicon racetrack resonators[J]. Photon. Research, 2020, 8(5): 684-689.

    [36] Liu X, Yu Y, Tang H, et al. Silicon-on-insulator-based microwave photonic filter with narrowband and ultrahigh peak rejection[J]. Opt. Lett., 2018, 43(6): 1359-1362.

    [37] Liu Y, Marpaung D, Choudhary A, et al. Lossless and high-resolution RF photonic notch filter[J]. Opt. Lett., 2016, 41(22): 5306-5309.

    [38] Marpaung D, Morrison B, Pagani M, et al. Ultra-high suppression microwave photonic bandstop filters[J]. Chinese Science Bulletin, 2014, 59(22): 2684-2692.

    [39] Liu Y, Hotten J, Choudhary A, et al. All-optimized integrated RF photonic notch filter[J]. Opt. Lett., 2017, 42(22): 4631-4634.

    [40] Liu Y, Marpaung D, Choudhary A, et al. Link performance optimization of chip-based Si3N4 microwave photonic filters[J]. J. of Lightwave Technol., 2018, 36(19): 4361-4370.

    [41] Taddei C, Zhuang L, Roeloffzen C G H, et al. High-selectivity on-chip optical bandpass filter with sub-100-MHz flat-top and under-2 shape factor[J]. IEEE Photon. Technol. Lett., 2019, 31(6): 455-458.

    [42] Xu L, Hou J, Tang H, et al. Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth[J]. Photon. Research, 2019, 7(2): 110-115.

    [43] Dong P, Feng N N, Feng D, et al. GHz-bandwidth optical filters based on high-order silicon ring resonators[J]. Opt. Express, 2010, 18(23): 23784-23789.

    [44] Madsen C K, Zhao J H. Optical Filter Design and Analysis[M]. New York: Wiley, 1999.

    [45] Zhuang L, Roeloffzen C G H, Hoekman M, et al. Programmable photonic signal processor chip for radio frequency applications[J]. Optica, 2015, 2(10): 854-859.

    [46] Perez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core[J]. Nature Commun., 2017, 8(1): 1-9.

    [47] Zhang W, Yao J. Photonic integrated field-programmable disk array signal processor[J]. Nature Commun., 2020, 11(1): 1-9.

    [48] Xie Y, Geng Z, Zhuang L, et al. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity[J]. Nanophotonics, 2017, 7(2): 421-454.

    [49] Li S, Cong R, He Z, et al. Switchable microwave photonic filter using a phase modulator and a silicon-on-insulator micro-ring resonator[J]. Chinese Opt. Lett., 2020, 18(5): 052501.

    [50] Yang H, Li J, Zheng P, et al. A stopband and passband switchable microwave photonic filter based on integrated dual ring coupled Mach-Zehnder interferometer[J]. IEEE Photonics J., 2019, 11(4): 1-8.

    [51] Burla M, Bazargani H P, St-Yves J, et al. Widely tunable microwave photonics notch filter based on a waveguide Bragg grating on silicon[C]// Proc. of 2014 IEEE Photonics Conf., 2014: 208-209.

    [52] Burla M, Bazargani H P, St-Yves J, et al. Frequency agile microwave photonics notch filter based on a waveguide Bragg grating on silicon[C]// Proc. of Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conf. (APMP), 2014: 392-394.

    [53] Zhang W, Yao J. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing[J]. Nature Commun., 2018, 9(1): 1-9.

    [54] Marpaung D, Morrison B, Pagani M, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity[J]. Optica, 2015, 2(2): 76-83.

    [55] Casas-Bedoya A, Morrison B, Pagani M, et al. Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire[J]. Opt. Lett., 2015, 40(17): 4154-4157.

    [56] Zhang W, Yao J. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter[J]. Opt. Lett., 2018, 43(15): 3622-3625.

    CLP Journals

    [1] PAN Changkai, WU Qiannan, LI Mengwei. Design of an L-Band Multilayer Low Group Delay Filter[J]. Microelectronics, 2023, 53(2): 350

    TAO Yuansheng, WANG Xingjun, HU Weiwei. Recent Progresses of Silicon Integrated Microwave Photonic Filters[J]. Semiconductor Optoelectronics, 2021, 42(1): 1
    Download Citation