• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101016 (2022)
Changjun Xu1, Jiquan Zhang1, Mo Liu1, Shunbin Wang1、2、*, and Pengfei Wang1、3、**
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • 2Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
  • 3Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • show less
    DOI: 10.3788/CJL202249.0101016 Cite this Article Set citation alerts
    Changjun Xu, Jiquan Zhang, Mo Liu, Shunbin Wang, Pengfei Wang. Midinfrared Laser in Ho3+ -Doped ZBYA Glass Fiber[J]. Chinese Journal of Lasers, 2022, 49(1): 0101016 Copy Citation Text show less
    References

    [1] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [2] Peng Y C, Zhao X W, Shang Y. Progress of the mid-infrared quantum-cascade lasers[J]. Micronanoelectronic Technology, 44, 845-852(2007).

    [3] Zhang L M, Zhou S H, Zhao H et al. Introduction of Fe2+ doped mid-infrared solid-state laser[J]. Laser and Infrared, 42, 360-364(2012).

    [4] Beck M, Hofstetter D, Aellen T et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 295, 301-305(2002).

    [5] Pollnan M. The route toward a diode-pumped 1-W erbium 3 μm fiber laser[J]. IEEE Journal of Quantum Electronics, 33, 1982-1990(1997).

    [6] Spencer D J, Beggs J A, Mirels H. Small-scale cw HF(DF) chemical laser[J]. Journal of Applied Physics, 48, 1206-1211(1977).

    [7] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [8] Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 7, 1-9(2015).

    [9] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 43, 971-974(2018).

    [10] Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 44, 491-494(2019).

    [11] Jia S J, Jia Z X, Yao C F et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 μm lasing[J]. Laser Physics, 28, 015802(2018).

    [12] Wang S B, Zhang J Q, Xu N N et al. 2.9 μm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser[J]. Optics Letters, 45, 1216-1219(2020).

    [13] Liu M, Zhang J Q, Xu N N et al. Room-temperature watt-level and tunable~3 μm lasers in Ho3+/Pr3+ co-doped AlF3-based glass fiber[J]. Optics Letters, 46, 2417-2420(2021).

    [14] Maes F, Fortin V, Poulain S et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 5, 761-764(2018).

    [15] Zhao H Y, Wang R C, Wang X et al. Intense mid-infrared emission at 3.9 μm in Ho3+-doped ZBYA glasses for potential use as a fiber laser[J]. Optics Letters, 45, 4272-4275(2020).

    [16] Zhao H Y, Li A Z, Yi Y T et al. A Tm3+-doped ZrF4-BaF2-YF3-AlF3 glass microsphere laser in the 2.0 μm wavelength region[J]. Journal of Luminescence, 212, 207-211(2019).

    [17] Zhao H Y, Yi Y T, Wang X et al. Triple-wavelength lasing at 1.50 μm, 1.84 μm and 2.08 μm in a Ho3+/Tm3+ co-doped fluorozirconate glass microsphere[J]. Journal of Luminescence, 219, 116889(2020).

    [18] Hanna D C. Fluorideglass fiber optics[J]. Journal of Modern Optics, 38, 2332-2333(1991).

    Changjun Xu, Jiquan Zhang, Mo Liu, Shunbin Wang, Pengfei Wang. Midinfrared Laser in Ho3+ -Doped ZBYA Glass Fiber[J]. Chinese Journal of Lasers, 2022, 49(1): 0101016
    Download Citation