• Acta Geographica Sinica
  • Vol. 75, Issue 7, 1451 (2020)
Zexing TAO1, Quansheng GE1、2, and Huanjiong WANG1、*
Author Affiliations
  • 1Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11821/dlxb202007009 Cite this Article
    Zexing TAO, Quansheng GE, Huanjiong WANG. Spatio-temporal variations in the thermal requirement of the first flowering dates of Salix babylonica and Ulmus pumila in China during 1963-2018[J]. Acta Geographica Sinica, 2020, 75(7): 1451 Copy Citation Text show less
    References

    [1] A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems[J]. International Journal of Biometeorology, 55, 805-817(2011).

    [2] et alShorter flowering seasons and declining abundance of flower visitors in a warmer Arctic[J]. Nature Climate Change, 3, 759-763(2013).

    [3] et al[J], 72, 53-63(2017).

    [4] et al[J], 25, 262-263(2008).

    [5] et alChanges in flowering phenology of woody plants from 1963 to 2014 in North China[J]. International Journal of Biometeorology, 63, 579-590(2019).

    [6] et al[J], 34, 99-105(2018).

    [7] Summary for policymakers//Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[J]. World Meteorological Organization, Geneva, Switzerland, 1-32(2018).

    [8] et alDetermination of chilling and heat requirements of 69 Japanese apricot cultivars[J]. European Journal of Agronomy, 74, 68-74(2016).

    [9] et alPhenological patterns of flowering across biogeographical regions of Europe[J]. International Journal of Biometeorology, 61, 1347-1358(2017).

    [10] Predicting the timing of budburst in temperate trees[J]. Journal of Applied Ecology, 29, 597-604(1992).

    [11] et al[J], 36, 779-789(2017).

    [12] et al[J], 25, 483-492(2014).

    [13] Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe[J]. Agricultural and Forest Meteorology, 217, 10-21(2016).

    [14] Models of the spring phenology of boreal and temperate trees: Is there something missing?[J]. Tree Physiology, 26, 1165-1172(2006).

    [15] et alClimate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data[J]. Global Change Biology, 10, 1133-1145(2004).

    [16] et alLittle change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998-2012[J]. Agricultural and Forest Meteorology, 232, 650-658(2017).

    [17] et alIncreased heat requirement for leaf flushing in temperate woody species over 1980-2012: Effects of chilling[J]. precipitation and insolation, Global Change Biology, 21, 2687-2697(2015).

    [18] et alWarmest extreme year in US history alters thermal requirements for tree phenology[J]. Oecologia, 183, 1197-1210(2017).

    [19] Temperature and photoperiod drive spring phenology across all species in a temperate forest community[J]. New Phytologist, 219, 1353-1362(2018).

    [20] et alChilling outweighs photoperiod in preventing precocious spring development[J]. Global Change Biology, 20, 170-182(2014).

    [21] et alShort photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut[J]. Global Change Biology, 25, 1696-1703(2019).

    [22] Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear[J]. Tree Physiology, 25, 109-114(2005).

    [23] et alInternal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures[J]. Tree Physiology, 34, 547-556(2014).

    [24] Thermal time, chill days and prediction of budburst in Picea sitchensis[J]. Journal of Applied Ecology, 20, 951-963(1983).

    [25] Increasing chilling reduces heat requirement for floral budbreak in peach[J]. Hortscience, 46, 245-252(2011).

    [26] WanMinwei, LiuXiuzhen.China Phenological Observation Method. Beijing: Science Press, 1979: 1-24. [ 宛敏渭, 刘秀珍. 中国物候观测方法. 北京: 科学出版社, 1979: 1-24.] [宛敏渭, 刘秀珍. 中国物候观测方法. 北京: 科学出版社, 1979: 1-24.]

    [27] [J], 31, 579-588(2012).

    [28] New algorithm for generating hourly temperature values using daily maximum, minimum and average values from climate models[J]. Building Services Engineering Research & Technology, 28, 237-248(2007).

    [29] Investigations on the annual cycle of development on forest trees active period[J]. Communicationes Instituti Forestalis Fenniae, 76, 1-110(1972).

    [30] Modelling bud dormancy release in trees from cool and temperate regions[J]. Acta Forestalia Fennica, 213, 1-47(1990).

    [31] Validation of chill unit and flower bud phenology models for "Montmorency" sour cherry[J]. Acta Horticulturae, 184, 71-78(1986).

    [32] et alSensitivity of winter chill models for fruit and nut trees to climatic changes expected in California's Central Valley[J]. Agriculture Ecosystems & Environment, 133, 23-31(2009).

    [33] What role for photoperiod in the bud burst phenology of European beech[J]. European Journal of Forest Research, 132, 1-8(2013).

    [34] et alUnexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes[J]. Global Change Biology, 20, 3743-3755(2014).

    [35] et alPredicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: The implications of local adaptation to climate[J]. Global Change Biology, 16, 1503-1514(2010).

    [36] et alGenetic and physiological bases for phenological responses to current and predicted climates[J]. Philosophical Transactions of the Royal Society of London, 365, 3129-3147(2010).

    [37] et alA genetic network mediating the control of bud break in hybrid aspen[J]. Nature Communications, 9, 4173(2018).

    [38] et al[J], 36, 702-710(2016).

    [39] Delayed response of spring phenology to global warming in subtropics and tropics[J]. Agricultural and Forest Meteorology, 234-235, 222-235(2017).

    [40] Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century[J]. International Journal of Biometeorology, 58, 473-484(2014).

    [41] et al[J], 39, 2116-2129(2017).

    [42] Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models[J]. Climate Research, 46, 159-170(2011).

    Zexing TAO, Quansheng GE, Huanjiong WANG. Spatio-temporal variations in the thermal requirement of the first flowering dates of Salix babylonica and Ulmus pumila in China during 1963-2018[J]. Acta Geographica Sinica, 2020, 75(7): 1451
    Download Citation