[1] PATIL J V, MALI S S, HONG C K. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency[J]. Sol RRL, 2020, 4(7): 2000164.
[2] SONG J, XIE H B, LIM E L, et al. Progress and perspective on inorganic CsPbI2Br perovskite solar cells[J]. Adv Energy Mater, 2022, 12(40): 2201854.
[3] NI Z Y, BAO C X, LIU Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells[J]. Science, 2020, 367(6484): 1352-1358.
[4] ZHENG X P, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nat Energy, 2017, 2: 17102.
[5] SHERKAR T S, MOMBLONA C, GIL-ESCRIG L, et al. Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions[J]. ACS Energy Lett, 2017, 2(5): 1214-1222.
[6] GUO Y X, ZHAO F, TAO J H, et al. Efficient and hole-transporting- layer-free CsPbI2 Br planar heterojunction perovskite solar cells through rubidium passivation[J]. ChemSusChem, 2019, 12(5): 983-989.
[7] XU Z M, ZHANG Z B, ZHOU X F. High-efficient hole-transport-material-free carbon-based all-inorganic perovskite solar cells using Cs-doped TiO2 nanorods array as the electron transport layer[J]. J Alloys Compd, 2022, 922: 166186.
[8] WANG Y, LIU X M, ZHANG T Y, et al. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant-[J]. Angew Chem Int Ed Engl, 2019, 58(46): 16691-16696.
[9] LEE J W, KIM H S, PARK N G. Lewis acid-base adduct approach for high efficiency perovskite solar cells[J]. Acc Chem Res, 2016, 49(2): 311-319.
[10] ZHANG H, TIAN Q W, XIANG W C, et al. Tailored cysteine-derived molecular structures toward efficient and stable inorganic perovskite solar cells[J]. Adv Mater, 2023, 35(31): e2301140.
[11] BALL J M, PETROZZA A. Defects in perovskite-halides and their effects in solar cells[J]. Nat Energy, 2016, 1: 16149.
[12] ZHENG D D, YI F X, ZHANG Q Y, et al. Multidimensional function upgradation of all-inorganic CsPbIBr2 perovskite film by doping an ionic additive for carbon-electrode-based solar cells[J]. Energy Tech, 2022, 10(7): 2200290.
[13] XIONG S B, DAI Y, YANG J M, et al. Surface charge-transfer doping for highly efficient perovskite solar cells[J]. Nano Energy, 2021, 79: 105505.
[14] OUEDRAOGO N A N, CHEN Y C, XIAO Y Y, et al. Stability of all-inorganic perovskite solar cells[J]. Nano Energy, 2020, 67: 104249.
[15] YUAN X B, LI R, XIONG Z A, et al. Synergistic crystallization modulation and defects passivation via additive engineering stabilize perovskite films for efficient solar cells[J]. Adv Funct Mater, 2023, 33(24): 2215096.
[16] LUO J C, HE R, LAI H G, et al. Improved carrier management via a multifunctional modifier for high-quality low-bandgap Sn-Pb perovskites and efficient all-perovskite tandem solar cells[J]. Adv Mater, 2023, 35(22): e2300352.
[17] YU F Y, HAN Q J, WANG L A, et al. Surface management for carbon-based CsPbI2Br perovskite solar cell with 14% power conversion efficiency[J]. Sol RRL, 2021, 5(9): 2100404.
[18] ZHU X J, DU M Y, FENG J S, et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport[J]. Angew Chem Int Ed, 2021, 60(8): 4238-4244.
[19] MOKHTAR M S A M, CHIN YAP C, MAT SALLEH M, et al. Effect of organic salt doping ratios on the performance of poly(9,9-di-n-hexylfluorenyl-2, 7-diyl) organic light emitting diode, OLED[C]//AIP Conference Proceedings. Damai Laut, (Malaysia). AIP, 2011: 264-267.
[20] WANG Y, ZHANG T Y, XU F, et al. A facile low temperature fabrication of high performance CsPbI2Br all-inorganic perovskite solar cells[J]. Sol RRL, 2018, 2(1): 1700180.
[21] CHEN M, JU M G, CARL A D, et al. Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells[J]. Joule, 2018, 2(3): 558-570.
[22] YUAN R H, CAI B, LV Y H, et al. Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells[J]. Energy Environ Sci, 2021, 14(9): 5074-5083.