[1] FILIP D G, SURDU V A, PADURARU A V, et al. Current development in biomaterials-hydroxyapatite and bioglass for applications in biomedical field: A review[J]. J Funct Biomater, 2022, 13(4): 248.
[2] LI J F, LI J Y, WEI Y H, et al. Ion release behavior of vanadium-doped mesoporous bioactive glass particles and the effect of the released ions on osteogenic differentiation of BMSCs via the FAK/MAPK signaling pathway[J]. J Mater Chem B, 2021, 9(37): 7848-7865.
[3] SHI M, ZHAO F J, SUN L Y, et al. Bioactive glass activates VEGF paracrine signaling of cardiomyocytes to promote cardiac angiogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2021, 124: 112077.
[4] CIRALDO F E, SCHNEPF K, GOLDMANN W H, et al. Development and characterization of bioactive glass containing composite coatings with ion releasing function for antibiotic-free antibacterial surgical sutures[J]. Materials, 2019, 12(3): 423.
[5] ZHENG K, TORRE E, BARI A, et al. Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities[J]. Mater Today Bio, 2020, 5: 100041.
[6] DELIORMANL A M. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering[J]. J Mater Sci Mater Med, 2015, 26(2): 1-13.
[7] MALAVASI G, SALVATORI R, ZAMBON A, et al. Cytocompatibility of potential bioactive cerium-doped glasses based on 45S5[J]. Materials, 2019, 12(4): 594.
[8] NOURMOHAMMADI E, KHOSHDEL-SARKARIZI H, NEDAEINIA R, et al. Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line[J]. J Cell Physiol, 2019, 234(4): 4987-4996.
[9] XIANG J Y, LI J M, HE J, et al. Cerium oxide nanoparticle modified scaffold interface enhances vascularization of bone grafts by activating calcium channel of mesenchymal stem cells[J]. ACS Appl Mater Interfaces, 2016, 8(7): 4489-4499.
[10] ZAMBON A, MALAVASI G, PALLINI A, et al. Cerium containing bioactive glasses: A review[J]. ACS Biomater Sci Eng, 2021, 7(9): 4388-4401.
[11] WERS E, OUDADESSE H, LEFEUVRE B, et al. Excess entropy and thermal behavior of Cu- and Ti-doped bioactive glasses[J]. J Therm Anal Calorim, 2014, 117(2): 579-588.
[12] MEZAHI F Z, GIROT A L, OUDADESSE H, et al. Reactivity kinetics of 52S4 glass in the quaternary system SiO2-CaO-Na2O-P2O5: Influence of the synthesis process: Melting versus sol-gel[J]. J Non Cryst Solids, 2013, 361: 111-118.
[13] DESHMUKH K, KOVARI K T, KRENEK T, et al. Recent advances and future perspectives of sol-gel derived porous bioactive glasses: A review[J]. RSC Adv, 2020, 10(56): 33782-33835.
[14] DURGALAKSHMI D, RAKKESH R A, ARUNA P, et al. Bioactivity and hemocompatibility of sol-gel bioactive glass synthesized under different catalytic conditions[J]. New J Chem, 2020, 44(48): 21026-21037.
[15] ZHENG K, BOCCACCINI A R. Sol-gel processing of bioactive glass nanoparticles: A review[J]. Adv Colloid Interface Sci, 2017, 249: 363-373.
[16] CHEN X F, MENG Y C, LI Y L, et al. Investigation on bio-mineralization of melt and sol-gel derived bioactive glasses[J]. Appl Surf Sci, 2008, 255(2): 562-564.
[17] CHOU Y J, HSIAO C W, TSOU N T, et al. Preparation and in vitro bioactivity of micron-sized bioactive glass particles using spray drying method[J]. Appl Sci, 2018, 9(1): 19.
[18] MOLINO G, BARI A, BAINO F, et al. Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass-ceramic scaffolds for bone tissue regeneration[J]. J Mater Sci, 2017, 52(15): 9103-9114.
[20] KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity?[J]. Biomaterials, 2006, 27(15): 2907-2915.
[21] LI H Y, WANG Z L, SONG Q X, et al. Polyetheretherketone microspheres loaded with cerium dioxide nanoparticles mitigate damage from cellular oxidative stress and promote bone repair[J]. Mater Des, 2023, 225: 111426.
[22] FRANCHINI M, LUSVARDI G, MALAVASI G, et al. Gallium- containing phospho-silicate glasses: Synthesis and in vitro bioactivity[J]. Mater Sci Eng C, 2012, 32(6): 1401-1406.