• Chinese Journal of Lasers
  • Vol. 51, Issue 11, 1101016 (2024)
Yan He1,2,3,*, Bangyi Tao4, Jiayong Yu5, Guangxiu Xu6, and Yifan Huang1,2,3
Author Affiliations
  • 1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Laboratory of Space Laser Information Transmission and Detection Technology, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4The Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, Zhejiang , China
  • 5Anhui Jianzhu University, Hefei 230601, Anhui , China
  • 6Naval Research Institute, Tianjin 300061, China
  • show less
    DOI: 10.3788/CJL240437 Cite this Article Set citation alerts
    Yan He, Bangyi Tao, Jiayong Yu, Guangxiu Xu, Yifan Huang. Development of Airborne LiDAR Bathymetric Technology and Application[J]. Chinese Journal of Lasers, 2024, 51(11): 1101016 Copy Citation Text show less
    References

    [1] He Y, Hu S J, Chen W B et al. Research progress of domestic airborne dual-frequency LiDAR detection technology[J]. Laser & Optoelectronics Progress, 55, 082801(2018).

    [2] Gordon H R. Interpretation of airborne oceanic lidar: effects of multiple scattering[J]. Applied Optics, 21, 2996-3001(1982).

    [3] Guenther G C. Airborne laser hydrography: system design and performance factors[D](1985).

    [4] Hickman G D, Hogg J E. Application of an airborne pulsed laser for near shore bathymetric measurements[J]. Remote Sensing of Environment, 1, 47-58(1969).

    [5] Hoge F E, Swift R N, Frederick E B. Water depth measurement using an airborne pulsed neon laser system[J]. Applied Optics, 19, 871-883(1980).

    [6] Banic J, Sizgoric S, O’Neil R. Scanning lidar bathymeter for water depth measurement[J]. Geocarto International, 2, 49-56(1987).

    [7] Penny M F, Abbot R H, Phillips D M et al. Airborne laser hydrography in Australia[J]. Applied Optics, 25, 2046-2058(1986).

    [8] Steinvall O, Klevebrant H, Lexander J et al. Laser depth sounding in the Baltic Sea[J]. Applied Optics, 20, 3284-3286(1981).

    [9] Irish J L, Lillycrop W J. Scanning laser mapping of the coastal zone: the SHOALS system[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 123-129(1999).

    [10] Steinvall O K, Koppari K R, Karlsson U C M. Airborne laser depth sounding: system aspects and performance[J]. Proceedings of SPIE, 2258, 392-412(1994).

    [11] Penny M F, Billard B, Abbot R H. LADS: the Australian laser airborne depth sounder[J]. International Journal of Remote Sensing, 10, 1463-1479(1989).

    [12] Tuell G, Barbor K, Wozencraft J. Overview of the coastal zone mapping and imaging lidar (CZMIL): a new multisensor airborne mapping system for the U.S. Army Corps of Engineers[J]. Proceedings of SPIE, 7695, 76950R(2010).

    [13] Fugro. Rapid Airborne Multibeam Mapping System[EB/OL]. https:∥www.fugro.com/about-fugro/our-expertise/innovations/rapid-airborne-multibeam-mapping-system

    [14] Mandlburger G, Pfennigbauer M, Schwarz R et al. Concept and performance evaluation of a novel UAV-borne topo-bathymetric LiDAR sensor[J]. Remote Sensing, 12, 986(2020).

    [15] Zhu X, Yang K C, Li Z G. The experiment of airborne laser bathymeter[J]. Chinese Journal of Lasers, 25, 470-472(1998).

    [16] He Y, Wu D. Performance evaluation of airborne ocean lidar for measuring chlorophyll-a, suspended matter and coastal water depth in the East China Sea[J]. Journal of Ocean University of Qingdao, 34, 649-654(2004).

    [17] Ouyang Y Z, Huang M T, Zhai G J et al. On the depth reduction in airborne laser hydrography[J]. Hydrographic Surveying and Charting, 23, 1-5(2003).

    [18] Ye X S, Huang M T, Ren L P et al. Computations of footprints for airborne laser bathymetry[J]. Engineering of Surveying and Mapping, 19, 31-34(2010).

    [19] Xu W X, Guo K, Liu Y X et al. Refraction error correction of airborne LiDAR bathymetry data considering sea surface waves[J]. International Journal of Applied Earth Observation and Geoinformation, 102, 102402(2021).

    [20] Huang T C, Tao B Y, Mao Z H et al. Classification of sea and land waveform based on multi-channel ocean lidar[J]. Chinese Journal of Lasers, 44, 0610002(2017).

    [21] Li Y Z, Qiu Z G, He L B et al. Combined bathymetric method of multi-channel waveform datafor dual-frequency LiDAR[J]. Hydrographic Surveying and Charting, 40, 47-51(2020).

    [22] Guo K, Li Q Q, Wang C S et al. Development of a single-wavelength airborne bathymetric LiDAR: system design and data processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 62-84(2022).

    [23] Yu J Y, Lu X S, Tian M Y et al. Effect analysis of positioning model and boresight error analysis of airborne lidar bathymetry system[J]. Infrared and Laser Engineering, 48, 0606005(2019).

    [24] Zhou G Q, Hu H C, Xu J S et al. Design of LiDAR optical machine system for airborne single frequency bathymetry[J]. Infrared and Laser Engineering, 50, 0203006(2021).

    [25] Hu S J, He Y, Chen W B et al. Design of airborne dual-frequency laser radar system[J]. Infrared and Laser Engineering, 47, 0930001(2018).

    [26] Wang D D, Xing S, He Y et al. Evaluation of a new lightweight UAV-borne topo-bathymetric LiDAR for shallow water bathymetry and object detection[J]. Sensors, 22, 1379(2022).

    [27] Wang X, Glennie C, Pan Z G. Weak echo detection from single photon lidar data using a rigorous adaptive ellipsoid searching algorithm[J]. Remote Sensing, 10, 1035(2018).

    [28] Collin A, Long B, Archambault P. Merging land-marine realms: spatial patterns of seamless coastal habitats using a multispectral LiDAR[J]. Remote Sensing of Environment, 123, 390-399(2012).

    [29] Guenther G C, LaRocque P E, Lillycrop W J. Multiple surface channels in scanning hydrographic operational airborne lidar survey (SHOALS) airborne lidar[J]. Proceedings of SPIE, 2258, 422-430(1994).

    [30] Ye X S, Huang M T, Ouyang Y Z et al. Application of Raman backscattered in detecting sea level and distinguishing sea with terrene[J]. Hydrographic Surveying and Charting, 28, 13-14, 17(2008).

    [31] Birkebak M, Eren F, Pe’eri S et al. The effect of surface waves on airborne lidar bathymetry (ALB) measurement uncertainties[J]. Remote Sensing, 10, 453(2018).

    [32] Liang G, Zhao X L, Zhao J H et al. Feature selection and mislabeled waveform correction for water-land discrimination using airborne infrared laser[J]. Remote Sensing, 13, 3628(2021).

    [33] Schmidt A, Rottensteiner F, Sörgel U. Water-land-classification in coastal areas with full waveform lidar data[J]. Photogrammetrie-Fernerkundung-Geoinformation, 71-81(2013).

    [34] Hu S J, He Y, Tao B Y et al. Classification of sea and land waveforms based on deep learning for airborne laser bathymetry[J]. Infrared and Laser Engineering, 48, 1113004(2019).

    [35] Zhao J H, Zhao X L, Zhang H M et al. Improved model for depth bias correction in airborne LiDAR bathymetry systems[J]. Remote Sensing, 9, 710(2017).

    [36] Wang D D, Xing S, Xu Q et al. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 51, 750-761(2022).

    [37] Liang G, Zhao X L, Zhao J H et al. MVCNN: a deep learning-based ocean-land waveform classification network for single-wavelength LiDAR bathymetry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 656-674(2023).

    [38] Zhao X L, Liang G, Zhao J H et al. Ocean-land waveform classification based on multichannel weighted voting of airborne green laser[J]. Laser & Optoelectronics Progress, 61, 0901004(2024).

    [39] Wagner W, Ullrich A, Melzer T et al. From single-pulse to full-waveform airborne laser scanners: potential and practical challenges[EB/OL]. https:∥www.isprs.org/proceedings/XXXV/congress/comm3/papers/267.pdf

    [40] Liu M G, He Y, Chen W B et al. Adaptive depth extraction algorithm for ocean lidar[J]. Chinese Journal of Lasers, 45, 1010001(2018).

    [41] Huang Y F, He Y, Zhu X L et al. Faint echo extraction from ALB waveforms using a point cloud semantic segmentation model[J]. Remote Sensing, 15, 2326(2023).

    [42] Hofton M A, Minster J B, Blair J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 38, 1989-1996(2000).

    [43] Yang G, Huang C M. Decomposing algorithm of laser altimeter waveforms[J]. Chinese Journal of Space Science, 25, 125-131(2005).

    [44] Wagner W, Roncat A, Melzer T et al. Waveform analysis techniques in airborne laser scanning[J]. International Archives of Photogrammetry and Remote Sensing, 36, 413-418(2007).

    [45] Ma H C, Li Q. Modified EM algorithm and its application to the decomposition of laser scanning waveform data[J]. National Remote Sensing Bulletin, 13, 35-41(2009).

    [46] Wang J H. Research on the key techniques of the airborne LIDAR data processing[D](2012).

    [47] Li P C. The technology of terrain and building reconstruction using airborne full-waveform LiDAR data[D](2015).

    [48] Guo K, Xu W X, Liu Y X et al. Gaussian half-wavelength progressive decomposition method for waveform processing of airborne laser bathymetry[J]. Remote Sensing, 10, 35(2018).

    [49] Wu J Y, van Aardt J A N, Asner G P. A comparison of signal deconvolution algorithms based on small-footprint LiDAR waveform simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 2402-2414(2011).

    [50] Wang C S, Li Q Q, Liu Y X et al. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 22-35(2015).

    [51] Wang D D, Xu Q, Xing S et al. Comparison of signal extraction method for airborne LiDAR bathymetry based on deconvolution[J]. Acta Geodaetica et Cartographica Sinica, 47, 161-169(2018).

    [52] Ding K, Li Q Q, Zhu J S et al. An improved quadrilateral fitting algorithm for the water column contribution in airborne bathymetric lidar waveforms[J]. Sensors, 18, 552(2018).

    [53] Westfeld P, Maas H G, Richter K et al. Analysis and correction of ocean wave pattern induced systematic coordinate errors in airborne LiDAR bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 314-325(2017).

    [54] Tulldahl M, Andersson M, Steinvall O. Airborne laser depth sounding: improvements in position- and depth estimates by local corrections for sea surface slope[C], 1421-1428(2000).

    [55] Hu S J, He Y, Chen W B. Correction of sea wave for airborne laser bathymetry[J]. Acta Photonica Sinica, 36, 2103-2105(2007).

    [56] Yang F L, Su D P, Ma Y et al. Refraction correction of airborne LiDAR bathymetry based on sea surface profile and ray tracing[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 6141-6149(2017).

    [57] Su D P, Yang F L, Ma Y et al. Classification of coral reefs in the South China Sea by combining airborne LiDAR bathymetry bottom waveforms and bathymetric features[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 815-828(2019).

    [58] Liu C D, Qi J W, Li J et al. Accurate refraction correction: assisted bathymetric inversion using ICESat-2 and multispectral data[J]. Remote Sensing, 13, 4355(2021).

    [59] Chen Y F, Zhu Z, Le Y et al. Refraction correction and coordinate displacement compensation in nearshore bathymetry using ICESat-2 lidar data and remote-sensing images[J]. Optics Express, 29, 2411-2430(2021).

    [60] Guo K, Li Q Q, Mao Q Z et al. Errors of airborne bathymetry LiDAR detection caused by ocean waves and dimension-based laser incidence correction[J]. Remote Sensing, 13, 1750(2021).

    [61] Guenther G C. Wind and nadir angle effects on airborne lidar water “surface” returns[J]. Proceedings of SPIE, 0637, 277-286(1986).

    [62] Mandlburger G, Pfennigbauer M, Pfeifer N. Analyzing near water surface penetration in laser bathymetry: a case study at the River Pielach[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 175-180(2013).

    [63] Ramnath V, Feygels V, Kopilevich Y et al. Predicted bathymetric lidar performance of coastal zone mapping and imaging lidar (CZMIL)[J]. Proceedings of SPIE, 7695, 769511(2010).

    [64] Zhang X L, Xing S, Wang D D et al. An airborne laser bathymetric waveform data processing algorithm[J]. Hydrographic Surveying and Charting, 38, 35-38(2018).

    [65] Schwarz R, Mandlburger G, Pfennigbauer M et al. Design and evaluation of a full-wave surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 1-10(2019).

    [66] Tao B Y, Li J Z, Guo W et al. Precise detection of water surface through the analysis of a single green waveform from bathymetry LiDAR[J]. Optics Express, 30, 40820-40841(2022).

    [67] Su D P. Key technologies for processing airborne LiDAR bathymetry[D](2018).

    [68] Li J Z, Tao B Y, He Y et al. Range difference between shallow and deep channels of airborne bathymetry LiDAR with segmented field-of-view receivers[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5703616(2022).

    [69] Yu J Y, Lu X S, Tian M Y et al. Automatic extrinsic self-calibration of mobile LiDAR systems based on planar and spherical features[J]. Measurement Science and Technology, 32, 065107(2021).

    [70] Huang M T, Zhai G J, Ouyang Y Z et al. Wave correction in airborne laser hydrography[J]. Geomatics and Information Science of Wuhan University, 28, 389-392(2003).

    [71] Shen J S, Huang M T, Ren L P. Research on position reduction technique of the airborne laser sounding[J]. Hydrographic Surveying and Charting, 23, 55-60(2003).

    [72] Ren L P, Zhao J S. Trajectory analysis of sea surface points in elliptical scanning of airborne laser bathymetry[J]. Hydrographic Surveying and Charting, 21, 31-37(2001).

    [73] Ye X S, Wang G F, Huang M T et al. Laser footprint distribution of laser airborne depth mapping system from surface and bottom of sea[J]. Journal of Geomatics Science and Technology, 27, 88-91(2010).

    [74] Li K, Zhang Y S, Tong X C et al. Positioning model and accuracy evaluation of conical scanning airborne laser bathymetry system[J]. Acta Geodaetica et Cartographica Sinica, 45, 425-433(2016).

    [75] Shen E H, Zhang Y S, Li K et al. Scanning track modeling and analysis of circular scanning airborne LiDAR bathymetry system[J]. Journal of Geomatics Science and Technology, 33, 53-58(2016).

    [76] Wu F, Jin D J, Zhang Z G et al. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 33, 173-180(2021).

    [77] Huang M T, Zhai G J, Wang R et al. The detection of abnormal data in marine survey[J]. Acta Geodaetica et Cartographica Sinica, 28, 269-277(1999).

    [78] Wright C W, Kranenburg C, Battista T A et al. Depth calibration and validation of the experimental advanced airborne research lidar, EAARL-B[J]. Journal of Coastal Research, 76, 4-17(2016).

    [79] Su D P, Yan D D, Chen L et al. Surface-volume-bottom joint-filtering algorithm for airborne LiDAR bathymetric point cloud[J]. Acta Geodaetica et Cartographica Sinica, 52, 614-623(2023).

    [80] Wang Y, Peng Q S, Tan R C et al. Airborne LiDAR seabed point cloud filtering method based on moving curved fitting[J]. Geospatial Information, 16, 21-23, 34, 7(2018).

    [81] Yang A X, Wu Z Y, Yang F L et al. Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 49-61(2020).

    [82] Zhang L, Ma H C, Gao G et al. Automatic registration of urban aerial images with airborne LiDAR points based on line-point similarity invariants[J]. Acta Geodaetica et Cartographica Sinica, 43, 372-379(2014).

    [83] Li J Y, Hu Q W, Zhang Y J et al. Robust symmetric iterative closest point[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 219-231(2022).

    [84] Cheng L, Chen S, Liu X Q et al. Registration of laser scanning point clouds: a review[J]. Sensors, 18, 1641(2018).

    [85] Li J H, Zhang C H, Xu Z Y et al. Iterative distance-aware similarity matrix convolution with mutual-supervised point elimination for efficient point cloud registration[M]. Computer vision-ECCV 2020, 12369, 378-394(2020).

    [86] Yang F L, Su D P, Zhang K et al. Mosaicing of airborne LiDAR bathymetry strips based on Monte Carlo matching[J]. Marine Geophysical Research, 38, 303-311(2017).

    [87] Ji X, Yang B S, Tang Q H et al. A coarse-to-fine strip mosaicing model for airborne bathymetric LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 8129-8142(2021).

    [89] Degnan J J, McGarry J F, Zagwodzki T W et al. Design and performance of a 3D imaging photon-counting microlaser altimeter operating from aircraft cruise altitudes under day or night conditions[J]. Proceedings of SPIE, 4546, 1-10(2002).

    [90] Degnan J J. A conceptual design for a spaceborne 3D imaging lidar[J]. E & I Elektrotechnik Und Informationstechnik, 119, 99-106(2002).

    [91] Degnan J J. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping[J]. Remote Sensing, 8, 958(2016).

    [92] Shrestha K Y, Carter W E, Slatton K C et al. Shallow bathymetric mapping via multistop single photoelectron sensitivity laser ranging[J]. IEEE Transactions on Geoscience and Remote Sensing, 50, 4771-4790(2012).

    [93] Mandlburger G, Lehner H, Pfeifer N. A comparison of single photon and full waveform LIDAR[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 397-404(2019).

    [94] Brown R, Hartzell P, Glennie C. Evaluation of SPL100 single photon lidar data[J]. Remote Sensing, 12, 722(2020).

    [95] Forfinski-Sarkozi N A, Parrish C E. Analysis of MABEL bathymetry in Keweenaw Bay and implications for ICESat-2 ATLAS[J]. Remote Sensing, 8, 772(2016).

    [96] Parrish C E, Magruder L A, Neuenschwander A L et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance[J]. Remote Sensing, 11, 1634(2019).

    [97] Zhang H H, Ding Y X, Huang G H. Photon counting laser bathymetry system[J]. Infrared and Laser Engineering, 48, 106002(2019).

    [98] Chen X, Kong W, Chen T et al. High-repetition-rate, sub-nanosecond and narrow-bandwidth fiber-laser-pumped green laser for photon-counting shallow-water bathymetric Lidar[J]. Results in Physics, 19, 103563(2020).

    [99] Gray D J, Anderson J, Nelson J et al. Using a multiwavelength LiDAR for improved remote sensing of natural waters[J]. Applied Optics, 54, F232-F242(2015).

    [100] Montes M A, Vuorenkoski A K, Metzger B et al. Interpretation of spectral LiDAR backscattering off the Florida coast[J]. Remote Sensing, 13, 2475(2021).

    [101] Li K P, He Y, Ma J et al. A dual-wavelength ocean lidar for vertical profiling of oceanic backscatter and attenuation[J]. Remote Sensing, 12, 2844(2020).

    [102] Yuan D P, Mao Z H, Chen P et al. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric ocean lidar[J]. Optics Express, 30, 29564-29583(2022).

    [103] Chen Y Q, Luo Q H, Guo S C et al. Multispectral LiDAR-based underwater ore classification using a tunable laser source[J]. Optics Communications, 551, 129903(2024).

    [104] Steinbacher F, Baran R, Andersen M S et al. High resolution, topobathymetric LiDAR coastal zone characterization in Denmark[EB/OL]. https:∥forskning.ku.dk/soeg/result/?pure=en/publications/high-resolution-topobathymetric-lidar-coastal-zone-characterization-in-denmark(2631b3e0-1bea-40a4-9708-ca4dbc2f5095).html

    [105] Ural S, Gruen A, Kocaman S. Point clouds over Tetiaroa-3D modeling of a tropical island by topo-bathymetirc Lidar[C](2019).

    [106] Maslov D V, Fadeev V V, Lyashenko A I. A shore-based lidar for coastal seawater monitoring[EB/OL]. http:∥eproceedings.uni-oldenburg.de/website/vol01_1/01_1_maslov1.pdf

    [107] Vosselman G, Maas H G[M]. Airborne and terrestrial laser scanning(2010).

    [108] Allis M, Peirson W, Banner M. Application of LiDAR as a measurement tool for waves[C](2011).

    [109] Zhang L P, Shi J, Zhu Y et al. An experimental study on monitoring wave profiles with LiDAR[J]. Ocean Engineering, 285, 115436(2023).

    [110] Martins K, Blenkinsopp C E, Power H E et al. High-resolution monitoring of wave transformation in the surf zone using a LiDAR scanner array[J]. Coastal Engineering, 128, 37-43(2017).

    [111] Lee J H, Churnside J H, Marchbanks R D et al. Oceanographic lidar profiles compared with estimates from in situ optical measurements[J]. Applied Optics, 52, 786-794(2013).

    [112] Churnside J, Hair J, Hostetler C et al. Ocean backscatter profiling using high-spectral-resolution lidar and a perturbation retrieval[J]. Remote Sensing, 10, 2003(2018).

    [113] Liu Z P, Liu D, Xu P T et al. Retrieval of seawater optical properties with an oceanic lidar[J]. National Remote Sensing Bulletin, 23, 944-951(2019).

    [114] Chen P, Jamet C, Zhang Z H et al. Vertical distribution of subsurface phytoplankton layer in South China Sea using airborne lidar[J]. Remote Sensing of Environment, 263, 112567(2021).

    [115] Chen P, Jamet C, Liu D. LiDAR remote sensing for vertical distribution of seawater optical properties and chlorophyll-a from the East China Sea to the South China Sea[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4207321(2022).

    [116] Tulldahl H M, Wikström S A. Classification of aquatic macrovegetation and substrates with airborne lidar[J]. Remote Sensing of Environment, 121, 347-357(2012).

    [117] Tulldahl H M, Philipson P, Kautsky H et al. Sea floor classification with satellite data and airborne lidar bathymetry[J]. Proceedings of SPIE, 8724, 87240B(2013).

    [118] Lin W T, Shih T Y, Hou S J et al. Coral patch mapping with airborne bathmetric lidar[C]. Indonesia, 1752-1756(2013).

    [119] Wang Y X, He X Q, Bai Y et al. Satellite retrieval of benthic reflectance by combining lidar and passive high-resolution imagery: Case-I water[J]. Remote Sensing of Environment, 272, 112955(2022).

    Yan He, Bangyi Tao, Jiayong Yu, Guangxiu Xu, Yifan Huang. Development of Airborne LiDAR Bathymetric Technology and Application[J]. Chinese Journal of Lasers, 2024, 51(11): 1101016
    Download Citation