• Frontiers of Optoelectronics
  • Vol. 13, Issue 4, 393 (2020)
Sergey Yu. KSENOFONTOV1、2, Pavel A. SHILYAGIN2、*, Dmitry A. TERPELOV2, Valentin M. GELIKONOV2, and Grigory V. GELIKONOV2
Author Affiliations
  • 1BioMedTech Llc, Nizhny Novgorod 603155, Russia
  • 2Institute of Applied Physics of the Russian Academy of Science, Nizhny Novgorod 603950, Russia
  • show less
    DOI: 10.1007/s12200-019-0951-0 Cite this Article
    Sergey Yu. KSENOFONTOV, Pavel A. SHILYAGIN, Dmitry A. TERPELOV, Valentin M. GELIKONOV, Grigory V. GELIKONOV. Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography[J]. Frontiers of Optoelectronics, 2020, 13(4): 393 Copy Citation Text show less
    References

    [1] Fercher A F, Hitzenberger C K, Kamp G, El-Zaiat S Y. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 1995, 117(1-2): 43-48

    [2] Gelikonov V M, Gelikonov G V, Terpelov D A, Shilyagin P A. Electronic interface systems for goals of spectral domain optical coherence tomography. Instruments and Experimental Techniques, 2012, 55(3): 392-398

    [3] Rajabi H, Zirak A. Speckle noise reduction and motion artifact correction based on modified statistical parameters estimation in OCT images. Biomedical Physics & Engineering Express, 2016, 2 (3): e035012

    [4] Kang W, Wang H, Wang Z, Jenkins M W, Isenberg G A, Chak A, Rollins A M. Motion artifacts associated with in vivo endoscopic OCT images of the esophagus. Optics Express, 2011, 19(21): 20722-20735

    [5] de Kinkelder R, Kalkman J, Faber D J, Schraa O, Kok P H B, Verbraak F D, van Leeuwen T G. Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina. Investigative Ophthalmology & Visual Science, 2011, 52(6): 3908-3913

    [6] Zawadzki R J, Miller D T. Retinal AO OCT. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and Applications. 2nd ed. Switzerland: Springer International Publishing, 2015, 1849-1920

    [7] Gelikonov V M, Gelikonov G V, Shilyagin P A. Optimization of Fizeau-based optical coherence tomography with a reference michelson interferometer. Bulletin of the Russian Academy of Sciences. Physics, 2008, 72(1): 93-97

    [8] Kraus M F, Potsaid B, Mayer M A, Bock R, Baumann B, Liu J J, Hornegger J, Fujimoto J G. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomedical Optics Express, 2012, 3(6): 1182-1199

    [9] rausMF, Liu J J, Schottenhamml J, Chen C L, Budai A, Branchini L, Ko T, Ishikawa H,Wollstein G, Schuman J, Duker J S, Fujimoto J G, Hornegger J. Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization. Biomedical Optics Express, 2014, 5(8): 2591-2613

    [10] Chen Z, Shen Y, Bao W, Li P, Wang X, Ding Z. Motion correction using overlapped data correlation based on a spatial-spectral encoded parallel optical coherence tomography. Optics Express, 2017, 25(6): 7069-7083

    [11] Chen Y, Hong Y J, Makita S, Yasuno Y. Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning. Biomedical Optics Express, 2018, 9(3): 1111-1129

    [12] Potsaid B, Gorczynska I, Srinivasan V J, Chen Y, Jiang J, Cable A, Fujimoto J G. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70000 to 312500 axial scans per second. Optics Express, 2008, 16(19): 15149-15169

    [13] Lezama J, Mukherjee D, McNabb R P, Sapiro G, Kuo A N, Farsiu S. Segmentation guided registration of wide field-of-view retinal optical coherence tomography volumes. Biomedical Optics Express, 2016, 7(12): 4827-4846

    [14] Camino A, Zhang M, Dongye C, Pechauer A D, Hwang T S, Bailey S T, Lujan B, Wilson D J, Huang D, Jia Y. Automated registration and enhanced processing of clinical optical coherence tomography angiography. Quantitative Imaging in Medicine and Surgery, 2016, 6(4): 391-401

    [15] Baghaie A, Yu Z, D’Souza R M. Involuntary eye motion correction in retinal optical coherence tomography: hardware or software solution? Medical Image Analysis, 2017, 37: 129-145

    [16] Camino A, Zhang M, Gao S S, Hwang T S, Sharma U, Wilson D J, Huang D, Jia Y. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology. Biomedical Optics Express, 2016, 7(10): 3905-3915

    [17] Lang A, Carass A, Al-Louzi O, Bhargava P, Solomon S D, Calabresi P A, Prince J L. Combined registration and motion correction of longitudinal retinal OCT data. In: Proceedings of SPIE, Volume 9784, Medical Imaging 2016: Image Processing. San Diego: SPIE, 2016, 97840X

    [18] Watanabe Y, Takahashi Y, Numazawa H. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction. Journal of Biomedical Optics, 2013, 19(2): 021105

    [19] Shemonski N D, Ahn S S, Liu Y Z, South F A, Carney P S, Boppart S A. Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography. Biomedical Optics Express, 2014, 5(12): 4131-4143

    [20] Lee J, Srinivasan V, Radhakrishnan H, Boas D A. Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex. Optics Express, 2011, 19(22): 21258- 21270

    [21] Carrasco-Zevallos OM, Nankivil D, Viehland C, Keller B, Izatt J A. Pupil tracking for real-time motion corrected anterior segment optical coherence tomography. PLoS One, 2016, 11(8): e0162015

    [22] Braaf B, Vienola K V, Sheehy C K, Yang Q, Vermeer K A, Tiruveedhula P, Arathorn D W, Roorda A, de Boer J F. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO. Biomedical Optics Express, 2013, 4(1): 51-65

    [23] Montuoro A, Wu J, Waldstein S, Gerendas B, Langs G, Simader C, Schmidt-Erfurth U. Motion artefact correction in retinal optical coherence tomography using local symmetry. In: Proceedings of MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention. Boston: Springer, 2014, 17, 130-137

    [24] Hu Z, Rollins A M. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. Optics Letters, 2007, 32 (24): 3525-3527

    [25] Gelikonov V M, Gelikonov G V, Shilyagin P A. Linearwavenumber spectrometer for high-speed spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106(3): 459-465

    [26] Shilyagin P A, Ksenofontov S Y, Moiseev A A, Terpelov D A, Matkivsky V A, Kasatkina I V, Mamaev Y A, Gelikonov G V, Gelikonov VM. Equidistant recording of the spectral components in ultra-wideband spectral-domain optical coherence tomography. Radiophysics and Quantum Electronics, 2018, 60(10): 769-778

    [27] Terpelov D A, Ksenofontov S Y, Gelikonov G V, Gelikonov V M, Shilyagin P A. A data-acquisition and control system for spectraldomain optical coherence tomography with a speed of 91 912 Ascans/ s based on a USB 3.0 interface. Instruments and Experimental Techniques, 2017, 60(6): 868-874

    [28] Leitgeb R A, Wojtkowski M. Complex and coherence-noise free Fourier domain optical coherence tomography. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and applications. 2nd ed. Switzerland: Springer International Publishing, 2015, 195-224

    [29] Gelikonov V M, Gelikonov G V, Kasatkina I V, Terpelov D A, Shilyagin P A. Coherent noise compensation in spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106 (6): 895-900

    [30] Ai J, Wang L V. Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography. Optics Letters, 2005, 30(21): 2939-2941

    [31] Leitgeb R A, Hitzenberger C K, Fercher A F, Bajraszewski T. Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Optics Letters, 2003, 28(22): 2201-2203

    [32] Zhang J, Nelson J S, Chen Z. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator. Optics Letters, 2005, 30(2): 147-149

    [33] Matkivsky V A, Moiseev A A, Ksenofontov S Y, Kasatkina I V, Gelikonov G V, Shabanov D V, Shilyagin P A, Gelikonov V M. Medium chromatic dispersion calculation and correction in spectraldomain optical coherence tomography. Frontiers of Optoelectronics, 2017, 10(3): 323-328

    [34] Gelikonov G V, Gelikonov V M. Measurement and compensation for the amplitude and phase spectral distortions of an interference signal in optical coherence tomography for the relative opticalspectrum width exceeding 10%. Radiophysics and Quantum Electronics, 2018, 61(2): 135-145

    [35] Matveev L A, Zaitsev V Y, Gelikonov G V, Matveyev A L, Moiseev A A, Ksenofontov S Y, Gelikonov V M, Sirotkina M A, Gladkova N D, Demidov V, Vitkin A. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Optics Letters, 2015, 40(7): 1472-1475

    [36] Moiseev A, Ksenofontov S, Sirotkina M, Kiseleva E, Gorozhantseva M, Shakhova N, Matveev L, Zaitsev V, Matveyev A, Zagaynova E, Gelikonov V, Gladkova N, Vitkin A, Gelikonov G. Optical coherence tomography-based angiography device with realtime angiography B-scans visualization and hand-held probe for everyday clinical use. Journal of Biophotonics, 2018, 11(10): e201700292

    [37] Huo L, Xi J, Wu Y, Li X. Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging. Optics Express, 2010, 18(14): 14375-14384

    [38] Moon S, Lee S W, Rubinstein M, Wong B J F, Chen Z. Semiresonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging. Optics Express, 2010, 18(20): 21183-21197

    [39] Park H C, Seo Y H, Jeong K H. Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation. Optics Express, 2014, 22(5): 5818-5825

    [40] Chen Y, Hong Y J, Makita S, Yasuno Y. Three-dimensional eye motion correction by Lissajous scan optical coherence tomography. Biomedical Optics Express, 2017, 8(3): 1783-1802

    [41] Chauhan B C, Stevens K T, Levesque J M, Nuschke A C, Sharpe G P, O’Leary N, Archibald M L, Wang X. Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice. PLoS One, 2012, 7(6): e40352

    [42] Taibbi G, Peterson G C, Syed M F, Vizzeri G. Effect of motion artifacts and scan circle displacements on Cirrus HD-OCT retinal nerve fiber layer thickness measurements. Investigative Ophthalmology & Visual Science, 2014, 55(4): 2251-2258

    [43] Bezerra H G, Costa M A, Guagliumi G, Rollins A M, Simon D I. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC: Cardiovascular Interventions, 2009, 2(11): 1035-1046

    [44] Ksenofontov S, Vasilenkova T. Method of optimizing maximum intensity projection technique for rendering scalar three-dimensional data in static mode, in interactive mode and in real time. Patent of Russian Federation RU 2533055, 2014

    [45] Ksenofontov S Y. Application of the method of multiple mutual synchronization of parallel computational threads in spectraldomain optical coherent tomography systems. Instruments and Experimental Techniques, 2019, 62(3): 317-323

    Sergey Yu. KSENOFONTOV, Pavel A. SHILYAGIN, Dmitry A. TERPELOV, Valentin M. GELIKONOV, Grigory V. GELIKONOV. Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography[J]. Frontiers of Optoelectronics, 2020, 13(4): 393
    Download Citation