• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 6, 2126 (2022)
LI Wei1、2, ZHOU Changrong1、2, LI Qingning1、2, LI Rui1、2, HOU Linghao1、2, and MENG Tianxiao1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    LI Wei, ZHOU Changrong, LI Qingning, LI Rui, HOU Linghao, MENG Tianxiao. Effect of Raw Material Pretreatment of Fe2O3 on Insulating and Electrical Properties of 0.7BiFeO3-0.3BaTiO3 Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2126 Copy Citation Text show less
    References

    [1] HAERTLING G H. Ferroelectric ceramics: history and technology[J]. Journal of the American Ceramic Society, 1999, 82(4): 797-818.

    [2] SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87.

    [3] RDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6): 1659-1681.

    [4] RINGGAARD E, WURLITZER T. Lead-free piezoceramics based on alkali niobates[J]. Journal of the European Ceramic Society, 2005, 25(12): 2701-2706.

    [5] HU W, TAN X, RAJAN K. BiFeO3-PbZrO3-PbTiO3 ternary system for high Curie temperature piezoceramics[J]. Journal of the European Ceramic Society, 2011, 31(5): 801-807.

    [6] ZHANG H, XU P, PATTERSON E, et al. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics[J]. Journal of the European Ceramic Society, 2015, 35(9): 2501-2512.

    [7] ROJAC T, MAKAROVIC M, WALKER J, et al. Piezoelectric response of BiFeO3 ceramics at elevated temperatures[J]. Applied Physics Letters, 2016, 109(4): 042904.

    [8] LU Z, WANG G, BAO W, et al. Superior energy density through tailored dopant strategies in multilayer ceramic capacitors[J]. Energy & Environmental Science, 2020, 13(9): 2938-2948.

    [9] WANG G, FAN Z, MURAKAMI S, et al. Origin of the large electro-strain in BiFeO3-BaTiO3 based lead-free ceramics[J]. Journal of Materials Chemistry A, 2019, 7(37): 21254-21263.

    [10] ROJAC T, BENCAN A, MALIC B, et al. BiFeO3 ceramics: processing, electrical, and electromechanical properties[J]. Journal of the American Ceramic Society, 2014, 97(7): 1993-2011.

    [12] SIMES A, RICCARDI C, DOS SANTOS M, et al. Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films[J]. Materials Research Bulletin, 2009, 44(8): 1747-1752.

    [13] WANG G, LU Z, YANG H, et al. Fatigue resistant lead-free multilayer ceramic capacitors with ultrahigh energy density[J]. Journal of Materials Chemistry A, 2020, 8(22): 11414-11423.

    [14] CHANDARAK S, JUTIMOOSIK J, BOOTCHANONT A, et al. Local structure of magnetoelectric BiFeO3-BaTiO3 ceramics probed by synchrotron X-ray absorption spectroscopy[J]. Journal of Superconductivity and Novel Magnetism, 2013, 26(2): 455-461.

    [15] LEONTSEV S O, EITEL R E. Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics[J]. Journal of the American Ceramic Society, 2009, 92(12): 2957-2961.

    [16] WANG L, LIANG R, ZHOU Z, et al. Electrical conduction mechanisms and effect of atmosphere annealing on the electrical properties of BiFeO3-BaTiO3 ceramics[J]. Journal of the European Ceramic Society, 2019, 39(15): 4727-4734.

    [17] YANG H B, ZHOU C R, LIU X Y, et al. Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3-BaTiO3 high temperature ceramics[J]. Journal of the European Ceramic Society, 2013, 33(6): 1177-1183.

    [18] HUANG S, LI Q, YANG L, et al. Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3-0.3BaTiO3 ceramics[J]. Ceramics International, 2018, 44(8): 8955-8962.

    [19] TONG K, ZHOU C, LI Q, et al. Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics[J]. Journal of the European Ceramic Society, 2018, 38(4): 1356-1366.

    [20] CHENG S, ZHANG B, ZHAO L, et al. Enhanced insulating and piezoelectric properties of BiFeO3-BaTiO3-Bi0.5Na0.5TiO3 ceramics with high curie temperature[J]. Journal of the American Ceramic Society, 2019, 102(12): 7355-7365.

    [21] GUAN S, YANG H, QIAO G, et al. Effects of Li2CO3 and CuO as composite sintering aids on the structure, piezoelectric properties, and temperature stability of BiFeO3-BaTiO3 ceramics[J]. Journal of Electronic Materials, 2020, 49(10): 6199-6207.

    [22] LI Z, PENG W, ZHOU C, et al. Enhanced real-time high temperature piezoelectric responses and ferroelectric scaling behaviors of MgO-doped 0.7BiFeO3-0.3BaTiO3 ceramics[J]. Ceramics International, 2018, 44(12): 14439-14445.

    [23] CAO W W, RANDALL C A. Grain size and domain size relations in bulk ceramic ferroelectric materials[J]. Journal of Physics and Chemistry of Solids, 1996, 57(10): 1499-1505.

    [24] TAN Y, ZHOU C, WANG J, et al. Probing the in-time piezoelectric responses and depolarization behaviors related to ferroelectric-relaxor transition in BiFeO3-BaTiO3 ceramics by in situ process[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(1): 1197-1203.

    LI Wei, ZHOU Changrong, LI Qingning, LI Rui, HOU Linghao, MENG Tianxiao. Effect of Raw Material Pretreatment of Fe2O3 on Insulating and Electrical Properties of 0.7BiFeO3-0.3BaTiO3 Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2126
    Download Citation