• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 1, 305 (2024)
WANG Lingling1, SHAO Wei1,2, HAN Fei3, ZOU Junhua3..., CHEN Wei1, HU Yin1, ZHANG Fen1 and SHI Zisheng1,2|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    WANG Lingling, SHAO Wei, HAN Fei, ZOU Junhua, CHEN Wei, HU Yin, ZHANG Fen, SHI Zisheng. Research Progress on Perovskite Composite Oxide Catalysts[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 305 Copy Citation Text show less
    References

    [1] ZHENG Qian. Study on photoelectric and photocatalytic properties of copper/tin oxide semiconductor[D]. Yangzhou: Yangzhou University, 2021.

    [2] HADJI F, OMARI M, MEBARKI M, et al. Zinc doping effect on the structural and electrochemical properties of LaCoO3 perovskite as a material for hybrid supercapacitor electrodes[J]. J Alloys Compd, 2023, 942: 169047.

    [3] SOURI M, SALAR AMOLI H. Gas sensing mechanisms in ABO3 perovskite materials at room temperature: A review[J]. Mater Sci Semicond Process, 2023, 156: 107271.

    [4] TAKALKAR G, BHOSALE R R. Solar thermocatalytic conversion of CO2 using PrxSr(1-x)MnO3-δ perovskites[J]. Fuel, 2019, 254: 115624.

    [5] KUMAR A, KUMAR A, KRISHNAN V. Perovskite oxide based materials for energy and environment-oriented photocatalysis[J]. ACS Catal, 2020, 10(17): 10253-10315.

    [6] ZHANG Qinqin, LI Zaixing, CHEN Xiaofei, et al. Fine Chem, 2022, 39(12): 2398-2408.

    [7] LIU Huan, GAO Xinyu, BAI Jie, et al. Appl Chem Ind, 2021, 50(12): 3498-3503.

    [8] WU J, YE R P, XU D J, et al. Emerging natural and tailored perovskite-type mixed oxides-based catalysts for CO2 conversions[J]. Front Chem, 2022, 10: 961355.

    [9] GRABOWSKA E. Selected perovskite oxides: characterization, preparation and photocatalytic properties—A review[J]. Appl Catal B Environ, 2016, 186: 97-126.

    [10] PE-A M A, FIERRO J L. Chemical structures and performance of perovskite oxides[J]. Chem Rev, 2001, 101(7): 1981-2017.

    [11] KOBAYASHI M, KATSURAYA R, NARA T, et al. Phase behavior and crystal structure of perovskite-type rare earth complex oxides[J]. J Rare Earths, 2006, 24(6): 668-672.

    [12] FU C J, MA Q A, GAO L M, et al. Recent advances in perovskite oxides electrocatalysts: Ordered perovskites, cations segregation and exsolution[J]. ChemCatChem, 2023, 15(11): e202300389.

    [13] WEI Y, LENG Y Q, WANG R Y, et al. Peroxydisulfate activation by LaNiO3 nanoparticles with different morphologies for the degradation of organic pollutants[J]. Water Sci Technol, 2022, 85(1): 39-51.

    [14] JANG I, KWON J, KIM C, et al. Boosted oxygen reduction reaction activity by ordering cations in the A-site of a perovskite catalyst[J]. ACS Sustainable Chem Eng, 2023, 11(12): 4623-4632.

    [15] HARN Y W, LIANG S, LIU S L, et al. Tailoring electrocatalytic activity of in situ crafted perovskite oxide nanocrystals via size and dopant control[J]. Proc Natl Acad Sci USA, 2021, 118(25): e2014086118.

    [16] ZHUANG Shuxin, LV Jianxian, LU Mi, et al. Prog Chem , 2015, 27(4): 436-447.

    [17] REIS J V, PEREIRA T C P, TELES T H A, et al. Synthesis of CeNb3O9 perovskite by pechini method[J]. Mater Lett, 2018, 227: 261-263.

    [18] WU Yuehui, LUO Laitao, LIU Wei. Chem Eng Oil Gas, 2007, 36(2): 101-105.

    [19] XU Wenyang. Preparation and characterization of perovskite-like composite oxides by Pechini method[D]. Changsha: Central South University, 2010.

    [20] CHENG Xinfeng, FU Yunzhi, ZHANG Xiaojiao. Inorg Chem Ind, 2010, 42(11): 1-3.

    [21] WANG Dao, HU Guoqiang, LI Wan. J Chin Rare Earth Soc, 1986, 4(2): 31-33.

    [22] WANG X, ZHANG Y N, ZHANG C, et al. Artificial intelligence-aided preparation of perovskite SrFexZr1-xO3-δ catalysts for ozonation degradation of organic pollutant concentrated water after membrane treatment[J]. Chemosphere, 2023, 318: 137825.

    [23] ZHANG X H, ZHOU Y H, XIONG W M, et al. Ex-situ catalytic microwave pyrolysis of alkali lignin facilitates the production of monophenols and monoaromatics under the application of LaFe1-xCuxO3 perovskites[J]. Fuel, 2023, 335: 126987.

    [24] LI S F, ZHENG J E, HU L A, et al. Sr-doped double perovskite La2CoMnO6 to promote the oxygen evolution reaction activity[J]. ChemElectroChem, 2022, 9(15): e202200475.

    [25] BIBI I, MAQBOOL H, IQBAL S, et al. La1-xGdxCr1-yNiyO3 perovskite nanoparticles synthesis by micro-emulsion route: Dielectric, magnetic and photocatalytic properties evaluation[J]. Ceram Int, 2021, 47(4): 5822-5831.

    [26] AAMIR M, BIBI I, ATA S, et al. Ferroelectric, dielectric, magnetic, structural and photocatalytic properties of Co and Fe doped LaCrO3 perovskite synthesized via micro-emulsion route[J]. Ceram Int, 2021, 47(12): 16696-16707.

    [27] LIU X, WANG Y Q, ZANG M, et al. Effect of A-site element on the performance of three-dimensionally ordered macroporous manganese-based perovskite catalyst[J]. J Saudi Chem Soc, 2020, 24(5): 417-424.

    [28] ZHAO M J, LIU J X, LIU J, et al. Fabrication of La1-xCaxFeO3 perovskite-type oxides with macro-mesoporous structure via a dual-template method for highly efficient soot combustion[J]. J Rare Earths, 2020, 38(4): 369-375.

    [29] FRESNO F, GALDóN S, BARAWI M, et al. Selectivity in UV photocatalytic CO2 conversion over bare and silver-decorated niobium-tantalum perovskites[J]. Catal Today, 2021, 361: 85-93.

    [30] OH J H, KWON B W, CHO J, et al. Importance of exsolution in transition-metal (Co, Rh, and Ir)-doped LaCrO3 perovskite catalysts for boosting dry reforming of CH4 using CO2 for hydrogen production[J]. Ind Eng Chem Res, 2019, 58(16): 6385-6393.

    [31] HUANG C W, CHEN R A, CHEN W Y, et al. Manipulating and revealing the roles of La and Zr dopants into ZnTiO3 perovskite toward heterogeneous photocatalytic degradation of tetracycline under visible light irradiation[J]. Top Catal, 2023, 66(1-4): 34-40.

    [32] RANJEKAR A M, YADAV G D. Hydrogen production by steam reforming of methanol by Cu-Zn/CeAlO3 perovskite[J]. New J Chem, 2023, 47(10): 4860-4870.

    [33] ZHU Z Z, GUO W Y, ZHANG Y, et al. Research progress on methane conversion coupling photocatalysis and thermocatalysis[J]. Carbon Energy, 2021, 3(4): 519-540.

    [34] WU P, JIN X J, QIU Y C, et al. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts[J]. Environ Sci Technol, 2021, 55(8): 4268-4286.

    [35] DO J Y, PARK N K, SEO M W, et al. Effective thermocatalytic carbon dioxide methanation on Ca-inserted NiTiO3 perovskite[J]. Fuel, 2020, 271: 117624.

    [36] TAKALKAR G, BHOSALE R R, ALMOMANI F, et al. Thermochemical splitting of CO2 using solution combustion synthesized lanthanum-strontium-manganese perovskites[J]. Fuel, 2021, 285: 119154.

    [37] ZHANG J P, WANG Y N, TIAN J M, et al. Cu/LaFeO3 as an efficient and stable catalyst for CO2 reduction: Exploring synergistic effect between Cu and LaFeO3[J]. AlChE J, 2022, 68(6): e17640.

    [38] YANG J, GUO Y B. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane[J]. Chin Chem Lett, 2018, 29(2): 252-260.

    [39] BIAN Z F, WANG Z G, JIANG B, et al. A review on perovskite catalysts for reforming of methane to hydrogen production[J]. Renew Sustain Energy Rev, 2020, 134: 110291.

    [40] SIM Y, KWON D, AN S N, et al. Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane[J]. Mol Catal, 2020, 489: 110925.

    [41] JIANG Jianjun, LIU Yihao, LI Qiang, et al. Environ Prot Chem Ind, 2022, 42(3): 318-324.

    [42] ZHAO K, ZHANG R J, GAO Y F, et al. High syngas selectivity and near pure hydrogen production in perovskite oxygen carriers for chemical looping steam methane reforming[J]. Fuel Process Technol, 2022, 236: 107398.

    [43] YIN X L, SHEN L H, WANG S, et al. Double adjustment of Co and Sr in LaMnO3+δ perovskite oxygen carriers for chemical looping steam methane reforming[J]. Appl Catal B Environ, 2022, 301: 120816.

    [44] WANG S F, LIU J, ZHANG Y Y, et al. Pseudo core-shell LaCoO3@MgO perovskite oxides for high performance methane catalytic oxidation[J]. J Rare Earths, 2021, 39(1): 51-57.

    [45] -ZBAY N, YARBAY -AHIN R Z. Effect of preparation method and B-side metal type on the physicochemical properties of LaBO3 perovskite catalyst and its catalytic behaviour in the biomass pyrolysis[J]. Biomass Convers Biorefin, 2022, 12(10): 4759-4772.

    [46] QIN J N, LIN L H, WANG X C. A perovskite oxide LaCoO3 cocatalyst for efficient photocatalytic reduction of CO2 with visible light[J]. Chem Commun, 2018, 54(18): 2272-2275.

    [47] MADI M, TAHIR M. Highly stable LaCoO3 perovskite supported g-C3N4 nanotextures with proficient charges migration for visible light CO2 photoreduction to CO and CH4[J]. Mater Sci Semicond Process, 2022, 142: 106517.

    [48] ZHANG Zhenmin, JIA Jingwen, ZHANG Mengfan, et al. Nonferrous Met Sci Eng, 2020, 11(4): 14-22.

    [49] ZHOU H, KOUHNAVARD M, JUNG S, et al. One-step aerosol synthesis of a double perovskite oxide (KBaTeBiO6) as a potential catalyst for CO2 photoreduction[J]. Nanoscale, 2021, 13(27): 11963-11975.

    [50] JIANG Y H, FAN Y Y, LI S Y, et al. Photocatalytic methane conversion: insight into the mechanism of C(sp3)-H bond activation[J]. CCS Chem, 2023, 5(1): 30-54.

    [51] YANG J, XIAO W, CHI X, et al. Solar-driven efficient methane catalytic oxidation over epitaxial ZnO/La0.8Sr0.2CoO3 heterojunctions[J]. Appl Catal B Environ, 2020, 265: 118469.

    [52] TAN B Q, YE Y H, HUANG Z A, et al. Promotion of photocatalytic steam reforming of methane over Ag0/Ag+-SrTiO3[J]. Chin Chem Lett, 2020, 31(6): 1530-1534.

    [53] CHEN W, HU Y, BA M W. Surface interaction between cubic phase NaNbO3 nanoflowers and Ru nanoparticles for enhancing visible-light driven photosensitized photocatalysis[J]. Appl Surf Sci, 2018, 435: 483-493.

    [54] HU Y, CHEN W, WANG S Q, et al. Facile synthesis of NaNbxTa1-xO3 with abundant oxygen vacancies for photocatalytic hydrogen evolution without co-catalyst[J]. Int J Hydrog Energy, 2021, 46(58): 29994-30004.

    [55] YANG Y Y, XIONG J H, SONG Y J, et al. Preparation of monolayer HSr2Nb3O10 nanosheets for photocatalytic hydrogen evolution[J]. Dalton Trans, 2019, 48(29): 11136-11141.

    [56] XIONG J H, JING K Q, ZOU J H, et al. A hybrid of CdS/HCa2Nb3O10 ultrathin nanosheets for promoting photocatalytic hydrogen evolution[J]. Dalton Trans, 2017, 46(40): 13935-13942.

    [57] WU H, HUANG Q X, SHI Y Y, et al. Electrocatalytic water splitting: Mechanism and electrocatalyst design[J]. Nano Res, 2023, 16(7): 9142-9157.

    [58] LV L, LU R H, ZHU J X, et al. Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate[J]. Angew Chem Int Ed Engl, 2023, 62(25): e202303117.

    [59] OCHEDI F O, LIU D J, YU J L, et al. Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: A review[J]. Environ Chem Lett, 2021, 19(2): 941-967.

    [60] CHANG B, MIN Z J, LIU N, et al. Electrocatalytic CO2 reduction to syngas[J]. Green Energy Environ, 2023: DOI: 10.1016/j.gee.2023.05.005.

    [61] NITOPI S, BERTHEUSSEN E, SCOTT S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chem Rev, 2019, 119(12): 7610-7672.

    [62] WANG Y Y, WANG Z L, WANG D, et al. Revealing the doping effect of Cu2+ on SrSnO3 perovskite oxides for CO2 electroreduction[J]. ChemElectroChem, 2022, 9(17): e202200635.

    [63] CHEN S H, SU Y Q, DENG P L, et al. Highly selective carbon dioxide electroreduction on structure-evolved copper perovskite oxide toward methane production[J]. ACS Catal, 2020, 10(8): 4640-4646.

    [64] PENG Meilan, LI Zhishan, ZHANG Xiaoxin, et al. J Chin Ceram Soc, 2023, 51(4): 1015-1024.

    [65] CHOI J, PARK S, HAN H, et al. Highly efficient CO2 electrolysis to CO on Ruddlesden-Popper perovskite oxide with in situ exsolved Fe nanoparticles[J]. J Mater Chem A, 2021, 9(13): 8740-8748.

    [66] WANG S, QIAN B, WANG Z, et al. High catalytic activity of Fe-based perovskite fuel electrode for direct CO2 electroreduction in SOECs[J]. J Alloys Compd, 2021, 888: 161573.

    [67] ZHANG L, ZHU J W, LI X, et al. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis[J]. Interdiscip Mater, 2022, 1(1): 51-87.

    [68] LEE S, KIM M, LEE K T, et al. CO2 electrolysis cells: enhancing electrochemical CO2 reduction using Ce(Mn, Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells[J]. Adv Energy Mater, 2021, 11(24): 2100339.

    [69] DENOYER L H, BENAVIDEZ A, GARZON F H, et al. Highly stable doped Barium niobate based electrocatalysts for effective electrochemical coupling of methane to ethylene[J]. Adv Materials Inter, 2022, 9(27): 2200796.

    [70] KIM J, KIM Y J, FERREE M, et al. In-situ exsolution of bimetallic CoFe nanoparticles on (La, Sr)FeO3 perovskite: Its effect on electrocatalytic oxidative coupling of methane[J]. Appl Catal B Environ, 2023, 321: 122026.

    [71] LIU D, ZHOU P F, BAI H Y, et al. Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction[J]. Small, 2021, 17(43): e2101605.

    [72] DA Y M, ZENG L R, WANG C Y, et al. A simple approach to tailor OER activity of SrxCo0.8Fe0.2O3 perovskite catalysts[J]. Electrochim Acta, 2019, 300: 85-92.

    [73] WU C R, SUN Y, WEN X J, et al. Adjusting oxygen vacancies in perovskite LaCoO3 by electrochemical activation to enhance the hydrogen evolution reaction activity in alkaline condition[J]. J Energy Chem, 2023, 76: 226-232.

    [74] JI D W, LIU C H, YAO Y H, et al. Cerium substitution in LaCoO3 perovskite oxide as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions[J]. Nanoscale, 2021, 13(22): 9952-9959.

    [75] PHOON B L, LAI C W, PAN G T, et al. One-pot hydrothermal synthesis of strontium titanate nanoparticles photoelectrode using electrophoretic deposition for enhancing photoelectrochemical water splitting[J]. Ceram Int, 2018, 44(8): 9923-9933.

    [76] LIU G Y, KARUTURI S K, CHEN H J, et al. Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering[J]. Sol Energy, 2020, 202: 198-203.

    [77] MA R, SUN J, LI D H, et al. Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications[J]. Int J Hydrog Energy, 2020, 45(55): 30288-30324.

    [78] ZHAO S H, WANG H B, LI Q, et al. Photothermal catalysis in CO2 reduction reaction: Principles, materials and applications[J]. N Carbon Mater, 2023, 38(2): 283-300.

    [79] SUN M Y, ZHAO B H, CHEN F P, et al. Thermally-assisted photocatalytic CO2 reduction to fuels[J]. Chem Eng J, 2021, 408: 127280.

    [80] BIAN H, LI D, WANG S Y, et al. 2D-C3N4 encapsulated perovskite nanocrystals for efficient photo-assisted thermocatalytic CO2 reduction[J]. Chem Sci, 2022, 13(5): 1335-1341.

    [81] ZHANG M, GAO H, CHEN J, et al. Calcination engineering of urchin-like CoOx-CN catalysts to enhance photothermocatalytic oxidation of toluene via photo-/ thermo- coupling effect[J]. Appl Catal B Environ, 2022, 307: 121208.

    [82] DU Z C, PETRU C, YANG X K, et al. Development of stable La0.9Ce0.1NiO3 perovskite catalyst for enhanced photothermochemical dry reforming of methane[J]. J CO2 Util, 2023, 67: 102317.

    [83] WEI G H, ZHENG D M, XU L J, et al. Photothermal catalytic activity and mechanism of LaNixCo1-xO3 (0≤x≤1) perovskites for CO2 reduction to CH4 and CH3OH with H2O[J]. Mater Res Express, 2019, 6(8): 086221.

    [84] ZHANG M M, WANG C H, WANG Y Y, et al. Tunable bismuth doping/loading endows NaTaO3 nanosheet highly selective photothermal reduction of CO2[J]. Nano Res, 2023, 16(2): 2142-2151.

    WANG Lingling, SHAO Wei, HAN Fei, ZOU Junhua, CHEN Wei, HU Yin, ZHANG Fen, SHI Zisheng. Research Progress on Perovskite Composite Oxide Catalysts[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 305
    Download Citation