• Frontiers of Optoelectronics
  • Vol. 2, Issue 3, 293 (2009)
Yongzhao XU1、*, Zhixin CHEN2, Hongtao LI1, and Yanfen WEI3
Author Affiliations
  • 1Department of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China
  • 2School of Information, Central University of Finance and Economics, Beijing 100081, China
  • 3Tianjin Mobile Communications Corporation, Tianjin 300021, China
  • show less
    DOI: 10.1007/s12200-009-0013-0 Cite this Article
    Yongzhao XU, Zhixin CHEN, Hongtao LI, Yanfen WEI. Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows[J]. Frontiers of Optoelectronics, 2009, 2(3): 293 Copy Citation Text show less
    References

    [1] Ravi Kanth Kumar V V, George A K, Reeves W H, Knight J C, Russell P St J. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 2002, 10(25): 1520-1525

    [2] Yu Y Q, Ruan S C, Du C L, Yao J Q. Spectral broadening in the 1.3 μm region using a 1.8-m-long photonic crystal fiber by femtosecond pulses from an optical parametric amplifier. Acta Photonica Sinica, 2005, 34(4): 481-484 (in Chinese)

    [3] Xu Y Z, Ren X M, Wang Z N, Zhang X, Huang Y Q. Flat supercontinuum generation at 1550 nm in a dispersion-flattened microstructure fibre using picosecond pulse. Chinese Physics Letters, 2007, 24(3): 734-737

    [4] Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B. Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber. Acta Physica Sinica, 2004, 53(12): 4243-4247 (in Chinese)

    [5] Yu Y Q, Ruan S C, Du C L, Yao J Q. Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser. Chinese Physics Letters, 2005, 22(2): 384-387

    [6] Kudlinski A, George A K, Knight J C, Travers J C, Rulkov A B, Popov S V, Taylor J R. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express, 2006, 14(12): 5715-5722

    [7] Ohara T, Takara H, Yamamoto T, Masuda H, Morioka T, Abe M, Takahashi H. Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. Journal of Lightwave Technology, 2006, 24(6): 2311-2317

    [8] Xu Y Z, Ren X M, Wang Z N, Zhang X, Huang Y Q. Flatly broadened supercontinuum generation at 10 Gbit/s using dispersionflattened photonic crystal fibre with small normal dispersion. Electronics Letters, 2007, 43(2): 87-88

    [9] Yusoff Z, Petropoulos P, Furusawa K, Monro TM, Richardson D J. A 36-channel  10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters, 2003, 15(12): 1689-1691

    [10] Nakasyotani T, Toda H, Kuri T, Kitayama K. Wavelength-divisionmultiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source. Journal of Lightwave Technology, 2006, 24(1): 404-410

    [11] Lee J H, Kim C H, Han Y G, Lee S B. WDM-based passive optical network upstream transmission at 1.25 Gb/s using Fabry-Perot laser diodes injected with spectrum-sliced, depolarized, continuous-wave supercontinuum source. IEEE Photonics Technology Letters, 2006, 18(17-20): 2108-2110

    [12] Wu W Q, Chen X W, Zhou H, Zhou K F, Lin X S, Lan S. Investigation of the ultraflattened dispersion in photonic crystal fibers with hybrid cores. Acta Photonica Sinica, 2006, 35(1): 109-113 (in Chinese)

    [13] Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 2004, 12(10): 2027-2032

    [14] Wu T L, Chao C H. A novel ultraflattened dispersion photonic crystal fiber. IEEE Photonics Technology Letters, 2005, 17(1); 67-69

    [15] Matsui T, Nakajima K, Sankawa I. Dispersion compensation over all the telecommunication bands with double-cladding photoniccrystal fiber. Journal of Lightwave Technology, 2007, 25(3): 757-762

    [16] Liu J G, Xue L F, Wang Z, Kai G Y, Liu Y G, Zhang W G, Dong X Y. Large anomalous dispersion at short wavelength and modal properties of a photonic crystal fiber with large air holes. IEEE Journal of Quantum Electronics, 2006, 42(9): 961-968

    [17] Ju J, Jin W, Suleyman Demokan M. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm. Journal of Lightwave Technology, 2006, 24(2): 825-830

    [18] Yamamoto T, Kubota H, Kawanishi S, Tanaka M, Yamaguchi S. Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537-1540

    [19] Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on finite element scheme: application to photonic crystal fibers. IEEE Journal of Quantum Electronics, 2002, 38(7): 927-933

    [20] Agrawal G P. Nonlinear Fiber Optics. 2nd ed. New York: Academic Press, 1995

    Yongzhao XU, Zhixin CHEN, Hongtao LI, Yanfen WEI. Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows[J]. Frontiers of Optoelectronics, 2009, 2(3): 293
    Download Citation