• Optics and Precision Engineering
  • Vol. 32, Issue 12, 1915 (2024)
Ping XIA1,2, Ziyi LI1,2, Bangjun LEI1,2,*, Yudie WANG1,2, and Tinglong TANG1,2
Author Affiliations
  • 1Hubei Key Laboratory of Intelligent Vision based Monitoring for Hydroelectric Engineering, Three Gorges University, Yichang443002, China
  • 2College of Computer and Information Technology, Three Gorges University, Yichang44300, China
  • show less
    DOI: 10.37188/OPE.20243212.1915 Cite this Article
    Ping XIA, Ziyi LI, Bangjun LEI, Yudie WANG, Tinglong TANG. Wavelet dehazeformer network for road traffic image dehazing method[J]. Optics and Precision Engineering, 2024, 32(12): 1915 Copy Citation Text show less
    References

    [1] Y H CHEN, W LI, C SAKARIDIS et al. Domain adaptive faster r-cnn for object detection in the wild, 3339-3348(2018).

    [2] D Y CHOI, J H CHOI, J CHOI et al. Sharpness enhancement and super-resolution of around-view monitor images. IEEE Transactions on Intelligent Transportation Systems, 19, 2650-2662(2018).

    [3] J A STARK. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 9, 889-896(2000).

    [4] W T YANG, R G WANG, S FANG et al. Variable filter retinex algorithm for foggy image enhancement. Journal of Computer-Aided Design & Computer Graphics, 22, 965-971(2010).

    [5] M SARKAR, P R SARKAR, U MONDAL et al. Empirical wavelet transform-based fog removal via dark channel prior. IET Image Processing, 14, 1170-1179(2020).

    [6] S BANERJEE, S SINHA CHAUDHURI. Nighttime image-dehazing: a review and quantitative benchmarking. Archives of Computational Methods in Engineering, 28, 2943-2975(2021).

    [7] R FATTAL. Single image dehazing. ACM Transactions on Graphics, 27, 1-9(2008).

    [8] G F MENG, Y WANG, J Y DUAN et al. Efficient image dehazing with boundary constraint and contextual regularization, 617-624(2013).

    [9] K M HE, J SUN, X O TANG. Single image haze removal using dark channel prior, 1956-1963(2009).

    [10] Y WANG, Y K YIN, X L YANG et al. Polarimetric dehazing based on fusing intensity and degree of polarization. Optics Laser Technology, 156, 108584(2022).

    [11] Z LIANG, X Y DING, Z T MI et al. Effective polarization-based image dehazing with regularization constraint. IEEE Geoscience and Remote Sensing Letters, 19, 8001405(2020).

    [12] S LAHA, A SHARMA, S N HU et al. Near-Infrared depth-independent image dehazing using haar wavelets, 5384-5390(2021).

    [13] M YU, T CUI, H Y LU et al. VIFNet: an End-to-end Visible-infrared Fusion Network for Image Dehazing. arXiv, 2404-07790(2024). http://arxiv.org/abs/2404.07790

    [14] N SHARMA, V KUMAR, S K SINGLA. Single image defogging using deep learning techniques: past, present and future. Archives of Computational Methods in Engineering, 28, 4449-4469(2021).

    [15] H H YANG, Y W FU. Wavelet U-net and the chromatic adaptation transform for single image dehazing, 2736-2740(2019).

    [16] B Y LI, W Q REN, D P FU et al. Benchmarking single image dehazing and beyond. IEEE Transactions on Image Processing, 492-505(2018).

    [17] Y D SONG, Z Q HE, H QIAN et al. Vision transformers for single image dehazing. IEEE Transactions on Image Processing, 32, 1927-1941(2023).

    [18] O RONNEBERGER, P FISCHER, T BROX. U-net Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science, 234-241(2015).

    [19] J GUI, X F CONG, L HE et al. Illumination Controllable Dehazing Network based on Unsupervised Retinex Embedding. arXiv, 2306-05675(2023). http://arxiv.org/abs/2306.05675

    [20] X QIN, Z L WANG, Y C BAI et al. FFA-net: feature fusion attention network for single image dehazing, 34, 11908-11915(2020).

    [21] Z X CHEN, Z W HE, Z M LU. DEA-Net: Single Image Dehazing Based on Detail-enhanced Convolution and Content-Guided Attention. arXiv, 2301-04805(2023). http://arxiv.org/abs/2301.04805

    [22] S W ZAMIR, A ARORA, S KHAN et al. Learning enriched features for real image restoration and enhancement, 492-511(2020).

    [23] J PARK, J Y LEE et al. CBAM: convolutional block attention module, 3-19(2018).

    [24] L SIFRE, S MALLAT. Rigid-motion Scattering for Texture Classification. arXiv, 1403-1687(2014). http://arxiv.org/abs/1403.1687

    [25] C SAKARIDIS, D X DAI, L VAN GOOL. Semantic foggy scene understanding with synthetic data. International Journal of Computer Vision, 126, 973-992(2018).

    [26] B X XIAO, Z R ZHENG, Y L ZHUANG et al. Single UHD image dehazing via Interpretable Pyramid Network. Signal Processing, 214, 109225(2024).

    [27] A GEIGER, P LENZ, C STILLER et al. Vision meets robotics: the KITTI dataset. The International Journal of Robotics Research, 32, 1231-1237(2013).

    [28] C GODARD, OMAC AODHA, M FIRMAN et al. Digging into self-supervised monocular depth estimation, 3827-3837(2019).

    [29] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [30] B Y LI, X L PENG, Z Y WANG et al. AOD-net: all-in-one dehazing network, 4780-4788(2017).

    [31] Y Y QU, Y Z CHEN, J Y HUANG et al. Enhanced Pix2pix dehazing network, 8152-8160(2019).

    Ping XIA, Ziyi LI, Bangjun LEI, Yudie WANG, Tinglong TANG. Wavelet dehazeformer network for road traffic image dehazing method[J]. Optics and Precision Engineering, 2024, 32(12): 1915
    Download Citation