[1] L. S. Blackford, A. Petitet, R. Pozo. An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw., 28, 135-151(2002).
[2] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Trans. Comput., 100, 948-960(1972).
[3] H. Kaul, M. A. Anders, S. K. Mathew. A 300 mV 494GOPS/W reconfigurable dual-supply 4-way SIMD vector processing accelerator in 45 nm CMOS. IEEE J. Solid-State Circuits, 45, 95-102(2010).
[4] S. K. Hsu, A. Agarwal, M. A. Anders. A 280 mV-to-1.1 V 256b reconfigurable SIMD vector permutation engine with 2-dimensional shuffle in 22 nm tri-gate CMOS. IEEE J. Solid-State Circuits, 48, 118-127(2013).
[5] Y. Shen, N. C. Harris, S. Skirlo. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).
[6] R. Hamerly, L. Bernstein, A. Sludds. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X, 9, 021032(2019).
[7] B. J. Shastri, A. N. Tait, T. F. de Lima. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).
[8] K. Kikuchi. Fundamentals of coherent optical fiber communications. J. Lightwave Technol., 34, 157-179(2016).
[9] B. Murmann. ADC performance survey 1997–2022(2022).
[10] A. Fardoost, F. G. Vanani, Z. Zhu. A high-speed photonic tensor accelerator. IEEE Photonics Conference (IPC), 1-2(2022).
[11] Z. Zhu, A. Fardoost, F. G. Vanani. Coherent general-purpose photonic matrix processor. ACS Photon., 11, 1189-1196(2024).
[12] M. A. Nahmias, T. F. de Lima, A. N. Tait. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 7701518(2020).
[13] A. N. Tait, M. A. Nahmias, B. J. Shastri. Broadcast and weight: an integrated network for scalable photonic spike processing. J. Lightwave Technol., 32, 3247-3439(2014).
[14] T. F. de Lima, H.-T. Peng, A. N. Tait. Machine learning with neuromorphic photonics. J. Lightwave Technol., 37, 1515-1534(2019).
[15] X. Wu, C. Huang, K. Xu. Mode-division multiplexing for silicon photonic network-on-chip. J. Lightwave Technol., 35, 3223-3228(2017).
[16] K. Y. Yang, C. Shirpurkar, A. D. White. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun., 13, 7862(2022).
[17] D. Dai, J. Wang, Y. Shi. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt. Lett., 38, 1422-1424(2013).
[18] G. Zhang, H. R. Mojaver, A. Das. Mode insensitive switch for on-chip interconnect mode division multiplexing systems. Opt. Lett., 45, 811-814(2020).
[19] H. Shiran, G. Zhang, O. Liboiron-Ladouceur. Dual-mode broadband compact 2 × 2 optical power splitter using sub-wavelength metamaterial structures. Opt. Express, 29, 23864-23876(2021).
[20] Y. Zhang, M. A. Al-Mumin, H. Liu. An integrated few-mode power splitter based on multimode interference. J. Lightwave Technol., 37, 3000-3008(2019).
[21] L. Su, D. Vercruysse, J. Skarda. Nanophotonic inverse design with SPINS: software architecture and practical considerations. Appl. Phys. Rev., 7, 011407(2020).
[22] C. M. Lalau-Keraly, S. Bhargava, O. D. Miller. Adjoint shape optimization applied to electromagnetic design. Opt. Express, 21, 21693-21701(2013).
[23] D. Melati, Y. Grinberg, M. Kamandar Dezfouli. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun., 10, 4775(2019).
[24] S. Molesky, Z. Lin, A. Y. Piggott. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).
[25] W. Shin, S. Fan. Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J. Comput. Phys., 231, 3406-3431(2012).
[26] R. C. Rumpf. Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB(2022).
[27] R. Barrett, M. Berry, T. F. Chan. Templates for the solution of linear systems: building blocks for iterative methods. Math. Comput., 64, 1349-1352(1995).
[28] Y. Tong, W. Zhou, X. Wu. Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. IEEE J. Quantum Electron., 56, 8400107(2020).
[29] B. Wohlfeil, G. Rademacher, C. Stamatiadis. A two-dimensional fiber grating coupler on SOI for mode division multiplexing. IEEE Photon. Technol. Lett., 28, 1241-1244(2016).
[30] N. K. Fontaine, R. Ryf, H. Chen. Design of high order mode-multiplexers using multiplane light conversion. European Conference on Optical Communication (ECOC), 1-3(2017).
[31] Y. Mae, Y. Shirai, J. Miura. Object tracking in cluttered background based on optical flow and edges. 13th International Conference on Pattern Recognition, 1, 196-200(1996).
[32] Z. Chen, J. Cao, Y. Tang. Tracking of moving object based on optical flow detection. International Conference on Computer Science and Network Technology, 2, 1096-1099(2011).
[33] B. K. P. Horn, B. G. Schunck. Determining optical flow. Artif. Intell., 17, 185-203(1981).
[34] L. Wu, D. Lv, N. Zhao. Research on germanium photodetector with multi-mode waveguide input. Photonics, 10, 455(2023).
[35] A. Amirsoleimani, F. Alibart, V. Yon. In‐memory vector‐matrix multiplication in monolithic complementary metal–oxide–semiconductor‐memristor integrated circuits: design choices, challenges, and perspectives. Adv. Intell. Syst., 2, 2000115(2020).
[36] J. Sun, R. Kumar, M. Sakib. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 37, 110-115(2019).