• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 8, 080015 (2023)
Xiangxiang SUN1、2 and Shangui ZHOU1、2、3、4、5、*
Author Affiliations
  • 1School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 2CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha 410081, China
  • 5Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.080015 Cite this Article
    Xiangxiang SUN, Shangui ZHOU. Deformed halo nuclei and shape decoupling effects[J]. NUCLEAR TECHNIQUES, 2023, 46(8): 080015 Copy Citation Text show less
    References

    [1] Tanihata I, Savajols H, Kanungo R. Recent experimental progress in nuclear halo structure studies[J]. Progress in Particle and Nuclear Physics, 68, 215-313(2013).

    [2] Otsuka T, Gade A, Sorlin O et al. Evolution of shell structure in exotic nuclei[J]. Reviews of Modern Physics, 92, 015002(2020).

    [3] Zhou S G. Structure of exotic nuclei: a theoretical review[C], INPC2016, 373(2017).

    [4] Freer M, Horiuchi H, Kanada-En'yo Y et al. Microscopic clustering in light nuclei[J]. Reviews of Modern Physics, 90, 035004(2018).

    [5] Ćwiok S, Heenen P H, Nazarewicz W. Shape coexistence and triaxiality in the superheavy nuclei[J]. Nature, 433, 705-709(2005).

    [6] Tanihata I, Hamagaki H, Hashimoto O et al. Measurements of interaction cross sections and nuclear radii in the light p-shell region[J]. Physical Review Letters, 55, 2676-2679(1985).

    [7] Nakamura T, Kobayashi N, Kondo Y et al. Halo structure of the island of inversion nucleus 31Ne[J]. Physical Review Letters, 103, 262501(2009).

    [8] Nakamura T, Kobayashi N, Kondo Y et al. Deformation-driven p-wave halos at the drip line: 31Ne[J]. Physical Review Letters, 112, 142501(2014).

    [9] Kobayashi N, Nakamura T, Kondo Y et al. Observation of a p-wave one-neutron halo configuration in 37Mg[J]. Physical Review Letters, 112, 242501(2014).

    [10] Yang Z H, Kubota Y, Corsi A et al. Quasifree neutron knockout reaction reveals a small s-orbital component in the Borromean nucleus 17B[J]. Physical Review Letters, 126, 082501(2021).

    [11] Cook K J, Nakamura T, Kondo Y et al. Halo structure of the neutron-dripline nucleus 19B[J]. Physical Review Letters, 124, 212503(2020).

    [12] Bagchi S, Kanungo R, Tanaka Y K et al. Two-neutron halo is unveiled in 29F[J]. Physical Review Letters, 124, 222504(2020).

    [13] Nakamura T. Neutron halo-recent experimental progress at RIBF[J]. AAPPS Bulletin, 29, 19(2019).

    [14] Meng J, Ring P. Relativistic Hartree-Bogoliubov description of the neutron halo in 11Li[J]. Physical Review Letters, 77, 3963-3966(1996).

    [15] Sun X X. Deformed two-neutron halo in 19B[J]. Physical Review C, 103, 054315(2021).

    [16] Hamamoto I. Deformed halo of 29F20[J]. Physics Letters B, 814, 136116(2021).

    [17] Zhou S G, Meng J E, Ring P et al. Neutron halo in deformed nuclei[J]. Physical Review C, 82, 011301(2010).

    [18] Li L L, Meng J E, Ring P et al. Deformed relativistic Hartree-Bogoliubov theory in continuum[J]. Physical Review C, 85, 024312(2012).

    [19] Sun X X, Zhao J, Zhou S G. Shrunk halo and quenched shell gap at N = 16 in 22C: inversion of sd states and deformation effects[J]. Physics Letters B, 785, 530-535(2018).

    [20] Hammer H W, Ji C, Phillips D R. Effective field theory description of halo nuclei[J]. Journal of Physics G: Nuclear and Particle Physics, 44, 103002(2017).

    [21] Sagawa H, Hagino K. Theoretical models for exotic nuclei[J]. The European Physical Journal A, 51, 102(2015).

    [22] Hagino K, Sagawa H, Nakamura T et al. Two-particle correlations in continuum dipole transitions in Borromean nuclei[J]. Physical Review C, 80, 031301(2009).

    [23] Michel N, Li J G, Xu F R et al. Two-neutron halo structure of 31F[J]. Physical Review C, 101, 031301(2020).

    [24] Hu B S, Wu Q, Sun Z H et al. Ab initio Gamow in-medium similarity renormalization group with resonance and continuum[J]. Physical Review C, 99, 061302(2019).

    [25] Frederico T, Delfino A, Tomio L et al. Universal aspects of light halo nuclei[J]. Progress in Particle and Nuclear Physics, 67, 939-994(2012).

    [26] Meng J. Relativistic continuum Hartree-Bogoliubov theory with both zero range and finite range Gogny force and their application[J]. Nuclear Physics A, 635, 3-42(1998).

    [27] Meng J, Toki H, Zhou S G et al. Relativistic continuum Hartree-Bogoliubov theory for ground-state properties of exotic nuclei[J]. Progress in Particle and Nuclear Physics, 57, 470-563(2006).

    [28] Pei J C, Zhang Y N, Xu F R. Evolution of surface deformations of weakly bound nuclei in the continuum[J]. Physical Review C, 87, 051302(2013).

    [29] Meng J, Zhou S G. Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum[J]. Journal of Physics G: Nuclear and Particle Physics, 42, 093101(2015).

    [30] Meng J, Ring P. Giant halo at the neutron drip line[J]. Physical Review Letters, 80, 460-463(1998).

    [31] Meng J, Toki H, Zeng J Y et al. Giant halo at the neutron drip line in Ca isotopes in relativistic continuum Hartree-Bogoliubov theory[J]. Physical Review C, 65, 041302(2002).

    [32] Long W H, Ring P, Meng J E et al. Nuclear halo structure and pseudospin symmetry[J]. Physical Review C, 81, 031302(2010).

    [33] Lu X L, Sun B Y, Long W H. Description of carbon isotopes within relativistic Hartree-Fock-Bogoliubov theory[J]. Physical Review C, 87, 034311(2013).

    [34] Grasso M, Yoshida S, Sandulescu N et al. Giant neutron halos in the non-relativistic mean field approach[J]. Physical Review C, 74, 064317(2006).

    [35] Rotival V, Duguet T. New analysis method of the halo phenomenon in finite many-fermion systems: first applications to medium-mass atomic nuclei[J]. Physical Review C, 79, 054308(2009).

    [36] Terasaki J, Zhang S Q, Zhou S G et al. Giant halos in relativistic and nonrelativistic approaches[J]. Physical Review C, 74, 054318(2006).

    [37] Pei J C, Kortelainen M, Zhang Y N et al. Emergent soft monopole modes in weakly bound deformed nuclei[J]. Physical Review C, 90, 051304(2014).

    [38] Nakada H, Takayama K. Intertwined effects of pairing and deformation on neutron halos in magnesium isotopes[J]. Physical Review C, 98, 011301(2018).

    [39] Chai Q Z, Pei J C, Fei N et al. Constraints on the neutron drip line with the newly observed 39Na[J]. Physical Review C, 102, 014312(2020).

    [40] Bender M, Heenen P H, Reinhard P G. Self-consistent mean-field models for nuclear structure[J]. Reviews of Modern Physics, 75, 121-180(2003).

    [41] Nikšić T, Vretenar D, Ring P. Relativistic nuclear energy density functionals: mean-field and beyond[J]. Progress in Particle and Nuclear Physics, 66, 519-548(2011).

    [42] Nikšić T, Vretenar D, Ring P. Beyond the relativistic mean-field approximation: configuration mixing of angular-momentum-projected wave functions[J]. Physical Review C, 73, 034308(2006).

    [43] Nikšić T, Vretenar D, Ring P. Beyond the relativistic mean-field approximation. II. configuration mixing of mean-field wave functions projected on angular momentum and particle number[J]. Physical Review C, 74, 064309(2006).

    [44] Yao J M, Meng J, Ring P et al. Three-dimensional angular momentum projection in relativistic mean-field theory[J]. Physical Review C, 79, 044312(2009).

    [45] Yao J M, Meng J, Ring P et al. Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions[J]. Physical Review C, 81, 044311(2010).

    [46] Yao J M, Zhou E F, Li Z P. Beyond relativistic mean-field approach for nuclear octupole excitations[J]. Physical Review C, 92, 041304(2015).

    [47] Wang K, Lu B N. The angular momentum and parity projected multidimensionally constrained relativistic Hartree-Bogoliubov model[J]. Communications in Theoretical Physics, 74, 015303(2022).

    [48] Sun X X, Zhou S G. Rotating deformed halo nuclei and shape decoupling effects[J]. Science Bulletin, 66, 2072-2078(2021).

    [49] Sun X X, Zhou S G. Angular momentum projection in the deformed relativistic Hartree-Bogoliubov theory in continuum[J]. Physical Review C, 104, 064319(2021).

    [50] Chen Y, Li L L, Liang H Z et al. Density-dependent deformed relativistic Hartree-Bogoliubov theory in continuum[J]. Physical Review C, 85, 067301(2012).

    [51] Zhang K Y, Cheoun M K, Choi Y B et al. Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional: examples of even-even Nd isotopes[J]. Physical Review C, 102, 024314(2020).

    [52] Pöschl W, Vretenar D, Ring P. Relativistic Hartree-Bogoliubov theory in coordinate space: finite element solution for a nuclear system with spherical symmetry[J]. Computer Physics Communications, 103, 217-250(1997).

    [53] Typel S. Lagrange-mesh method for deformed nuclei with relativistic energy density functionals[J]. Frontiers in Physics, 6, 73(2018).

    [54] Pannert W, Ring P, Boguta J. Relativistic mean-field theory and nuclear deformation[J]. Physical Review Letters, 59, 2420-2422(1987).

    [55] Zhou S G, Meng J E, Ring P. Spherical relativistic Hartree theory in a Woods-Saxon basis[J]. Physical Review C, 68, 034323(2003).

    [56] Stoitsov M V, Dobaczewski J, Nazarewicz W et al. Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis. The program HFBTHO (v1.66p)[J]. Computer Physics Communications, 167, 43-63(2005).

    [57] Sun X X, Zhao J, Zhou S G. Study of ground state properties of carbon isotopes with deformed relativistic Hartree-Bogoliubov theory in continuum[J]. Nuclear Physics A, 1003, 122011(2020).

    [58] Zhang K Y, Wang D Y, Zhang S Q. Effects of pairing, continuum, and deformation on particles in the classically forbidden regions for Mg isotopes[J]. Physical Review C, 100, 034312(2019).

    [59] ZHOU Shangui. Single particle states in the Fermi sea and Dirac sea in spherical nuclei[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 46, 012003(2016).

    [60] Lalazissis G A, König J, Ring P. New parametrization for the Lagrangian density of relativistic mean field theory[J]. Physical Review C, 55, 540-543(1997).

    [61] CHEN Ying. Time-odd deformed relativistic Hartree-Bogoliubov theory and its application on halo nuclei[D](2014).

    [62] Zhao P W, Li Z P, Yao J M et al. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction[J]. Physical Review C, 82, 054319(2010).

    [63] Wang M, Huang W J, Kondev F G et al. The AME 2020 atomic mass evaluation (II). Tables, graphs and references[J]. Chinese Physics C, 45, 030003(2021).

    [64] Suzuki T, Kanungo R, Bochkarev O et al. Nuclear radii of 17, 19B and 14Be[J]. Nuclear Physics A, 658, 313-326(1999).

    [65] Kanungo R, Horiuchi W, Hagen G et al. Proton distribution radii of 12–19C illuminate features of neutron halos[J]. Physical Review Letters, 117, 102501(2016).

    [66] Togano Y, Nakamura T, Kondo Y et al. Interaction cross section study of the two-neutron halo nucleus 22C[J]. Physics Letters B, 761, 412-418(2016).

    [67] Sun X X, Guo L. Microscopic study of fusion reactions with a weakly bound nucleus: effects of deformed halo[J]. Physical Review C, 107, L011601(2023).

    [68] Zhang K Y, He X T, Meng J E et al. Predictive power for superheavy nuclear mass and possible stability beyond the neutron drip line in deformed relativistic Hartree-Bogoliubov theory in continuum[J]. Physical Review C, 104, L021301(2021).

    [69] Pan C, Zhang K Y, Chong P S et al. Possible bound nuclei beyond the two-neutron drip line in the 50≤Z≤70 region[J]. Physical Review C, 104, 024331(2021).

    [70] He X T, Wang C, Zhang K Y et al. Possible existence of bound nuclei beyond neutron drip lines driven by deformation[J]. Chinese Physics C, 45, 101001(2021).

    [71] Choi Y B, Lee C H, Mun M H et al. Bubble nuclei with shape coexistence in even-even isotopes of Hf to Hg[J]. Physical Review C, 105, 024306(2022).

    [72] Kim S, Mun M H, Cheoun M K et al. Shape coexistence and neutron skin thickness of Pb isotopes by the deformed relativistic Hartree-Bogoliubov theory in continuum[J]. Physical Review C, 105, 034340(2022).

    [73] Zhang K Y, Cheoun M K, Choi Y B et al. Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum, I: even-even nuclei[J]. Atomic Data and Nuclear Data Tables, 144, 101488(2022).

    [74] Pan C, Cheoun M K, Choi Y B et al. Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional. II. examples of odd Nd isotopes[J]. Physical Review C, 106, 014316(2022).

    [75] XIA Xuewei. Triaxially deformed relativistic Hartree-Bogoliubov theory in continuum and its application to exotic nuclei[D](2018).

    [76] ZHANG Kaiyuan. Relativistic density functional theory in continuum: exploring triaxially deformed halo nuclei[D](2022).

    [77] Geng J, Long W H. Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei[J]. Physical Review C, 105, 034329(2022).

    [78] SUN Xiangxiang. Study on deformed halo nuclei by covariant density functional theory[D](2020).

    Xiangxiang SUN, Shangui ZHOU. Deformed halo nuclei and shape decoupling effects[J]. NUCLEAR TECHNIQUES, 2023, 46(8): 080015
    Download Citation