• Chinese Journal of Lasers
  • Vol. 43, Issue 2, 203003 (2016)
Chen Hongyu*, Gu Dongdong, Gu Ronghai, Chen Wenhua, and Dai Donghua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201643.0203003 Cite this Article Set citation alerts
    Chen Hongyu, Gu Dongdong, Gu Ronghai, Chen Wenhua, Dai Donghua. Microstructure Evolution and Mechanical Properties of 5CrNi4Mo Die Steel Parts by Selective Laser Melting Additive Manufacturing[J]. Chinese Journal of Lasers, 2016, 43(2): 203003 Copy Citation Text show less
    References

    [1] Lu Bingheng, Li Dichen. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4): 1-4.

    [2] Liu Yantao, Gong Xinyong, Liu Mingkun, et al.. Microstructure and tensile properties of laser melting deposited Ti2AlNb-based alloy [J]. Chinese J Lasers, 2014, 41(1): 0103005.

    [3] Dai Donghua, Gu Dongdong, Li Yali, et al.. Numerical simulation of metallurgical behavior of melt pool during selective laser melting of W-Cu composite powder system[J]. Chinese J Lasers, 2013, 40(11): 1103001.

    [4] Wang Huaming, Zhang Shuquan, Wang Xiangming. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese J Lasers, 2009, 36(12): 3204-3209.

    [5] Wang Di, Liu Ruicheng, Yang Yongqiang. Clearance design and process optimization of non-assembly mechanisms fabricated by selective laser melting[J]. Chinese J Lasers, 2014, 41(2): 0203004.

    [6] Song Changhui, Yang Yongqiang, Wang Yunda, et al.. Research on process and property of CoCrMo alloy directly manufactured by selective laser melting[J]. Chinese J Lasers, 2014, 41(6): 0603001.

    [7] Yang Yongqiang, Luo Ziyi, Su Xubin, et al.. Study on process and effective factors of stainless steel thin-wall parts manufactured by selective laser melting[J]. Chinese J Lasers, 2011, 38(1): 0103001.

    [8] Ding Li, Li Huaixue, Wang Yudai, et al.. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese J Lasers, 2015, 42(4): 0406003.

    [9] Wang Di, Yang Yongqiang, Wu Weihui. Process optimization for 316 L stainless steel by fiber laser selective melting[J]. Chinese J Lasers, 2009, 36(12): 3233-3239.

    [10] Fu Liding, Shi Yusheng, Zhang Wenxian, et al.. The process research of 316 L stainless steel in selective laser melting[J]. Applied Laser, 2008, 28(2): 108-111.

    [11] A Simchi, H Pohl. Direct laser sintering of iron-graphite powder mixture[J]. Materials Science and Engineering A, 2004, 383(2): 191- 200.

    [12] B C Zhang, L Dembinski, C Coddet. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316 L powder[J]. Materials Science and Engineering A, 2013, 584: 21-31.

    [13] J P Kruth, L Froyen, J V Vaerenbergh, et al.. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1-3): 616-622.

    [14] Y C Liu, F Lan, G C Yang, et al.. Microstructural evolution of rapidly solidified Ti-Al peritectic alloy[J]. Journal of Crystal Growth, 2004, 271(1-2): 313-318.

    [15] M Schwarz, C B Arnold, M J Aziz, et al.. Dendritic growth velocity and diffusive speed in solidification of undercooled dilute Ni-Zr melts [J]. Materials Science and Engineering A, 1997, 226: 420-424.

    [16] B Song, S J Dong, Q Liu, et al.. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior[J]. Materials and Design, 2014, 54: 727-733.

    [17] D D Gu, Y C Hagedorn, W Meiners, et al.. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.

    [18] H H Zhu, L Lu, J Y H Fuh. Influence of binder′s liquid volume fraction on direct laser sintering of metallic powder[J]. Materials Science and Engineering A, 2004, 371(1-2): 170-177.

    [19] D D Gu, Y F Shen. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS[J]. Journal of Alloys and Compounds, 2009, 473(1-2): 107-115.

    [20] C Weingarten, D Buchbinder, N Pirch, et al.. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg [J]. Journal of Materials Processing Technology, 2015, 221: 112-120.

    [21] A Simchi, H Pohl. Effects of laser sintering processing parameters on the microstructure and densification of iron powder[J]. Materials Science and Engineering A, 2003, 359(1-2): 119-128.

    CLP Journals

    [1] Liu Jiahe, Zhu Haihong, Hu Zhiheng, Ke Linda, Zeng Xiaoyan. Control of Elevated Edge in Selective Laser Melt Molding[J]. Chinese Journal of Lasers, 2017, 44(12): 1202007

    [2] Ji Xiantai, Chen Keyu, Zhou Yan, Wen Shifeng, Wei Qingsong, Chen Zhiping. Effect of Cr on Performance of Mold Steel Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91402

    [3] Zhou Yan, Duan Longchen, Wu Xueliang, Wen Shifeng, Wei Qingsong. Effect of Powder Particle Size on Wear and Corrosion Resistance of S136 Mould Steels Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101403

    Chen Hongyu, Gu Dongdong, Gu Ronghai, Chen Wenhua, Dai Donghua. Microstructure Evolution and Mechanical Properties of 5CrNi4Mo Die Steel Parts by Selective Laser Melting Additive Manufacturing[J]. Chinese Journal of Lasers, 2016, 43(2): 203003
    Download Citation