• Photonics Research
  • Vol. 12, Issue 2, 282 (2024)
Yuheng Mao1,†, Shuwen Bai2,†, Mingcheng Panmai1, Lidan Zhou1,3..., Shimei Liu1, Shulei Li4, Haiying Liu1, Haihua Fan1, Jun Dai4 and Sheng Lan1,*|Show fewer author(s)
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
  • 2Shenzhen Institute of Terahertz Technology and Innovation, Shenzhen 518102, China
  • 3State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
  • 4School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
  • show less
    DOI: 10.1364/PRJ.503661 Cite this Article Set citation alerts
    Yuheng Mao, Shuwen Bai, Mingcheng Panmai, Lidan Zhou, Shimei Liu, Shulei Li, Haiying Liu, Haihua Fan, Jun Dai, Sheng Lan, "Controllable shaping of high-index dielectric nanoparticles by exploiting the giant optical force of femtosecond laser pulses," Photonics Res. 12, 282 (2024) Copy Citation Text show less
    References

    [1] G. T. Boyd, Z. H. Yu, Y. R. Shen. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B, 33, 7923-7936(1986).

    [2] T. Haug, P. Klemm, S. Bange. Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films. Phys. Rev. Lett., 115, 067403(2015).

    [3] G. C. Li, Y. L. Zhang, J. Jiang. Metal-substrate-mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement. ACS Nano, 11, 3067-3080(2017).

    [4] W. Rao, Q. Li, Y. Wang. Comparison of photoluminescence quantum yield of single gold nanobipyramids and gold nanorods. ACS Nano, 9, 2783-2791(2015).

    [5] S. Wang, T. Ding. Photothermal-assisted optical stretching of gold nanoparticles. ACS Nano, 13, 32-37(2019).

    [6] A. Babynina, M. Fedoruk, P. Kuhler. Bending gold nanorods with light. Nano Lett., 16, 6485-6490(2016).

    [7] S. V. Makarov, A. S. Zalogina, M. Tajik. Light-induced tuning and reconfiguration of nanophotonic structures. Laser Photon. Rev., 11, 1700108(2017).

    [8] A. Kuhlicke, S. Schietinger, C. Matyssek. In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting. Nano Lett., 13, 2041-2046(2013).

    [9] Q. Dai, M. Ouyang, W. Yuan. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory. Adv. Mater., 29, 1701918(2017).

    [10] S. Li, M. Panmai, S. Tie. Regulating disordered plasmonic nanoparticles into polarization sensitive metasurfaces. Nanophotonics, 10, 1553-1563(2021).

    [11] Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko. Directional visible light scattering by silicon nanoparticles. Nat. Commun., 4, 1527(2013).

    [12] J. Xiang, J. Chen, Q. Dai. Modifying Mie resonances and carrier dynamics of silicon nanoparticles by dense electron-hole plasmas. Phys. Rev. Appl., 13, 014003(2020).

    [13] H. Huang, F. Deng, J. Xiang. Plasmon-exciton coupling in dielectric-metal hybrid nanocavities with an embedded two-dimensional material. Appl. Surf. Sci., 542, 148660(2021).

    [14] F. Deng, H. Huang, J. D. Chen. Greatly enhanced plasmon-exciton coupling in Si/WS2/Au nanocavities. Nano Lett., 22, 220-228(2022).

    [15] S. Liu, F. Deng, W. Zhuang. Optical introduction and manipulation of plasmon-exciton-trion coupling in a Si/WS2/Au nanocavity. ACS Nano, 16, 14390-14401(2022).

    [16] C. Zhang, Y. Xu, J. Liu. Lighting up silicon nanoparticles with Mie resonances. Nat. Commun., 9, 2964(2018).

    [17] J. Xiang, M. Panmai, S. Bai. Crystalline silicon white light sources driven by optical resonances. Nano Lett., 21, 2397-2405(2021).

    [18] X. He, S. Liu, S. Li. Si/Au hybrid nanoparticles with highly efficient nonlinear optical emission: implication for nanoscale white light sources. ACS Appl. Nano Mater., 5, 10676-10685(2022).

    [19] L. Zhou, M. Panmai, S. Li. Lighting up Si nanoparticle arrays by exploiting the bound states in the continuum formed in a Si/Au hybrid nanostructure. ACS Photon., 9, 2991-2999(2022).

    [20] M. Panmai, J. Xiang, S. Li. Highly efficient nonlinear optical emission from a subwavelength crystalline silicon cuboid mediated by supercavity mode. Nat. Commun., 13, 2749(2022).

    [21] J. Xiang, S. Jiang, J. Chen. Hot-electron intraband luminescence from GaAs nanospheres mediated by magnetic dipole resonances. Nano Lett., 17, 4853-4859(2017).

    [22] C. H. Cho, C. O. Aspetti, J. Park. Silicon coupled with plasmon nanocavity generates bright visible hot-luminescence. Nat. Photonics, 7, 285-289(2013).

    [23] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [24] A. Ashkin. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA, 94, 4853-4860(1997).

    [25] L. Gong, B. Gu, G. Rui. Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles. Photon. Res., 6, 138-143(2018).

    [26] K. Koshelev, S. Kruk, E. Melik-Gaykazyan. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    [27] L. Zhu, Y. Tai, H. Li. Multidimensional optical tweezers synthetized by rigid-body emulated structured light. Photon. Res., 11, 1524-1534(2023).

    [28] E. M. Conwell. Properties of silicon and germanium. Proc. IRE, 40, 1327-1337(1952).

    [29] A. Rudenko, K. Ladutenko, S. Makarov. Photogenerated free carrier-induced symmetry breaking in spherical silicon nanoparticle. Adv. Opt. Mater., 6, 1701153(2018).

    [30] I. Sinev, I. Iorsh, A. Bogdanov. Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films. Laser Photon. Rev., 10, 799-806(2016).

    [31] E. Xifré-Pérez, L. Shi, U. Tuzer. Mirror-image-induced magnetic modes. ACS Nano, 7, 664-668(2013).

    [32] H. Li, Y. Xu, J. Xiang. Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices. Nanoscale, 8, 18963-18971(2016).

    [33] A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar. Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles. ACS Photon., 2, 1423-1428(2015).

    [34] G. P. Zograf, M. I. Petrov, S. V. Makarov. All-dielectric thermonanophotonics. Adv. Opt. Photon., 13, 643-702(2021).

    [35] U. Zywietz, A. B. Evlyukhin, C. Reinhardt. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun., 5, 3402(2014).

    [36] M. J. Crow, K. Seekell, A. Wax. Polarization mapping of nanoparticle plasmonic coupling. Opt. Lett., 36, 757-759(2011).

    [37] M. E. Kleemann, J. Mertens, X. Zheng. Revealing nanostructures through plasmon polarimetry. ACS Nano, 11, 850-855(2017).

    Yuheng Mao, Shuwen Bai, Mingcheng Panmai, Lidan Zhou, Shimei Liu, Shulei Li, Haiying Liu, Haihua Fan, Jun Dai, Sheng Lan, "Controllable shaping of high-index dielectric nanoparticles by exploiting the giant optical force of femtosecond laser pulses," Photonics Res. 12, 282 (2024)
    Download Citation