• Journal of Atmospheric and Environmental Optics
  • Vol. 13, Issue 6, 401 (2018)
Xiaomin TIAN1、2, Dong LIU1、*, Jiwei XU1、2, Zhenzhu WANG1, Bangxin WANG1, Decheng WU1, Zhiqing ZHONG1, Chenbo XIE1, and Yingjian WANG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2018.06.001 Cite this Article
    TIAN Xiaomin, LIU Dong, XU Jiwei, WANG Zhenzhu, WANG Bangxin, WU Decheng, ZHONG Zhiqing, XIE Chenbo, WANG Yingjian. Review on Atmospheric Detection Lidar Network and Spaceborne Lidar Technology[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(6): 401 Copy Citation Text show less
    References

    [1] Weitkamp C.Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere[M]. Springer Science & Business, 2006.

    [2] Godin-Beekmann S. Network for the detection of atmospheric composition change[C].WMO Experts Meeting on the implementation of a GAW Aerosol Lidar Observation Network: GALION, 2007.

    [3] Bosenberg J. European Aerosol research Lidar network[C].Experts Meeting on the implementation of a GAW Aerosol Lidar Observation Network: GALION, 2007.

    [4] Chaikovsky A, Ivanov A, Balin Y,et al. Lidar network CIS-LiNet for monitoring aerosol and ozone in CIS regions[C]. Proceedings of SPIE, 2006, 6160: 616035.

    [5] Nishizawa T, Sugimoto N, Matsui I,et al. The asian dust and aerosol lidar observation network (AD-NET): strategy and progress[C]. EPJ Web of Conferences, 2016, 119: 19001.

    [6] Welton E J, Campbell J R, Spinhirne J D,et al. Global monitoring of clouds and aerosols using a network of micropulse lidar systems[C]. Second International Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment, and Space, 2001, 4153: 151-158.

    [7] Hoff R M, McCann K J, McMillan W W,et al. REALM lidar observations during the INTEX/NE-NEAQS study period, paper 5.3[C]// nd Symposium on Lidar Applications, AMS Annual Meeting, 2005.

    [8] Bsenberg J, Hoff R, Ansmann A,et al. Plan for implementation of a GAW aerosol lidar observation network: GALION. World Meteorological Organization[R]. WMO-TD 1443, 2007.

    [9] Winker D M, Couch R H, Mccormick M. An overview of LITE: NASA’s lidar in-space technology experiment[J].Proceedings of the IEEE, 1996, 84(2): 164-180.

    [10] Stoffelen A, Pailleux J, Kllén E,et al. The atmospheric dynamics mission for global wind field measurement[J]. Bulletin of the American Meteorological Society, 2005, 8(1): 73-87.

    [11] Illingworth A J, Barker H W, Beljaars A,et al. The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation[J]. Bulletin of the American Meteorological Society, 2015, 9(8): 1311-1332.

    [12] Bézy J L. ESA’s earth observation lidar missions and critical technology developments[C].ICSO, 2010.

    [13] Durand Y, Bézy J L, Meynart R. Laser technology developments in support of ESA’s earth observation missions[C].Solid State Lasers XVII: Technology and Devices, 2008, 6871: 68710G.

    [14] Gérard E, Tan D G H, Garand L,et al. Major advances foreseen in humidity profiling from the water vapour lidar experiment in space (WALES)[J]. Bulletin of the American Meteorological Society, 2004, 85(2): 237-251.

    [15] Pierangelo C, Millet B, Esteve F,et al. MERLIN (methane remote sensing LIDAR mission): an overview[C]. EPJ Web of Conferences, 2016: 26001.

    [16] Stephan C, Alpers M, Millet B,et al. MERLIN: a space-based methane monitor[C]. SPIE Optical Engineering Applications, 2011, 8259: 815908.

    [17] ASCENDS[OL]. https://fpd.larc.nasa.gov/ ascends.html.

    [18] 3D-Winds, Three-Dimensional Tropospheric Winds[OL]. https://www.nap.edu/read/11952/ chapter/20.

    [19] Network for the detection of atmospheric composition change[OL]. http://www.ndsc.ncep. noaa.gov/.

    [20] NDACC. NDACC lidar working group[OL]. http://ndacc-lidar.org/.

    [21] Leblanc T, Sica R, Gijsel A V,et al. Standardized definition and reporting of vertical resolution and uncertainty in the ndacc lidar ozone and temperature algorithms.[R]. International Space Science Institute (ISSI) report summary, 2016.

    [22] EARLINET[OL]. https://www.earlinet.org/ index. php id= earlinet-homepage.

    [23] Papayannis A, Amiridis V, Mona L,et al. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002)[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D10).

    [24] Bsenberg J, Matthias V, Linné H,et al. EARLINET: A European Aerosol Research Lidar Network to establish an aerosol climatology[J]. Max-Planck-Institut fur Meteorologie, 2003(348): 1-191.

    [25] Bckmann C, Wandinger U, Ansmann A,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms[J]. Applied Optics, 2004, 43(4): 977-989.

    [26] Matthais V, Freudenthaler V, Amodeo A,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments[J]. Applied Optics, 2004, 43(4): 961-976.

    [27] Pappalardo G, Amodeo A, Pandolfi M,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio[J]. Applied Optics, 2004, 43(28): 5370-5385.

    [28] ACTRIS[OL]. http://www.actris.eu/.

    [29] Lidar Calibration Centre. How often is the alighment and calibration checked [OL]. http:// lical.inoe.ro/.

    [30] Myhre C L, Baltensperger U, Barrie L,et al. Recommendations for a composite surface-based aerosol network[R]. World Meteorological Organization, 2012.

    [31] MPLNET[OL]. https://mplnet.gsfc.nasa.gov/.

    [32] Baltensperger U, Barrie L, Wehrli C. WMO/ GAW experts workshop on a global surface-based network for long term observations of column aerosol optical properties[R]. WMO/ TD- No. 1287; Geneva, Switzerland, 2004.

    [33] Sugimoto N, Nishizawa T, Shimizu A,et al. Continuous observation of atmospheric aerosols across East Asia[N]. SPIE Newsroom, 2015.

    [34] AD-Net, the Asian dust and aerosol lidar observation network[OL]. http://www-lidar. nies.go.jp/AD-Net/.

    [35] Sugimoto N, Matsui I, Shimizu A,et al. Lidar network observation of tropospheric aerosols[C]. Lidar Remote Sensing for Environmental Monitoring IX, 2008: 71530A-1.

    [36] Sugimoto N, Nishizawa T, Shimizu A,et al. Characterization of aerosols in East Asia with the Asian dust and aerosol lidar observation network (AD-Net)[C]// Lidar Remote Sensing for Environmental Monitoring XIV. International Society for Optics and Photonics, 2014, 9262: 92620K.

    [37] Shimizu A, Sugimoto N, Matsui I,et al. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia[J]. Journal of Geophysical Research, 2004, 109(D19): D19S17.

    [38] Sugimoto N, Uno I, Nishikawa M,et al. Record heavy Asian dust in Beijing in 2002: Observations and model analysis of recent events[J]. Geophysical Research Letters, 2003, 30(12): 1640.

    [39] Sugimoto N, Nishizawa T, Shimizu A,et al. Characterization of aerosols in East Asia with the Asian dust and aerosol lidar observation network (AD-Net)[C]. SPIE Asia-Pacific Remote Sensing, 2014, 9262: 92620K.

    [40] REALM Data Center[OL]. http://alg.umbc.edu/ REALM/ RDC/.

    [41] Regional East Atmospheric Lidar Mesonet (REALM)[OL]. http://alg.umbc.edu/REALM/.

    [42] CREST Lidar Network[OL]. https://noaacrest. umbc.edu/crest-lidar-network/.

    [43] Chaikovsky A, Balin Y, Elnikov A,et al. CIS-LiNet-lidar network in CIS countries[J]. Geophysical Research Abstracts, 2005, 7: 03687.

    [44] CIS Lidar Network for Atmosphere Monitoring[OL]. http://www.istc.int/en/project/F7ACDCD 76036CA9AC3256EDD002F619A.

    [45] Zuev V V, Balin Y S, Bukin O,et al. Results of joint observations of aerosol perturbations of the stratosphere at the CIS-LiNet network in 2008[J]. Atmospheric and Oceanic Optics, 2009, 22(3): 295-301.

    [46] GALION. World meteorological organization (WMO) commission for atmospheric sciences (CAS) global atmosphere watch (GAW)[OL]. http://alg.umbc.edu/galion/.

    [47] World Meteorological Organization. Networks contributing to the GAW programme (contributing networks)[OL]. http://www.wmo. int/pages/prog/arep/gaw/GAW-contr-networks. html.

    [48] Seagram A F.Nowcasting Precipitation Onset in Vancouver Using CORALNet-UBC Lidar Imagery[D]. Vancouver: Bachelor of Science Honours of University of British Columbia, 2010.

    [49] Zwally H, Schutz B, Abdalati W,et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 2002, 34(3): 405-445.

    [50] ICESat-2(ice, cloud and land elevation satellite-2)[OL]. https://directory.eoportal.org/web/ eoportal/satellite-missions/i/icesat-2.

    [51] Abdalati W, Zwally H J, Bindschadler R,et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 2010, 98(5): 735-751.

    [52] Newmann T, Markus T, Mcgill M,et al. MABEL and the ICESat-2 Mission: Photon-counting Altimetry from Air and Space[J]. The Earth Observer, 2012, 24(5): 4-8.

    [53] Winker D M, Hunt W H, Mcgill M J. Initial performance assessment of CALIOP[J].Geophysical Research Letters, 2007, 34(19): L19803.

    [54] Liu D, Wang Z, Liu Z,et al. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D16): D16214.

    [55] Liu Z, Vaughan M, Winker D,et al. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance[J]. Journal of Atmospheric and Oceanic Technology, 2009, 2(7): 1198-1213.

    [56] Omar A H, Winker D M, Vaughan M A,et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 2(10): 1994-2014.

    [57] Sassen K, Wang Z, Liu D. Global distribution of cirrus clouds from CloudSat/Cloud‐Aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D8): D00A12.

    [58] Lu Naimeng, Min Min, Dong Lixin,et al. Development and prospect of spaceborne Lidar for atmospheric detection[J]. Journal of Remote Sensing, 2016, 20(1): 1-10(in Chinese).

    [59] OSCAR. Satellite: ASCENDS[OL]. https:// www. wmo-sat. info/oscar/ satellites/view/12.

    [60] OSCAR. Satellite: 3d-Winds[OL]. https:// www.wmo-sat.info/oscar/satellites/view/505.

    [61] Clouds. Ecosystems[OL]. https://acemission. gsfc.nasa.gov/about.html

    [62] OSCAR. Instrument: ACE Lidar[OL]. https:// www.wmo-sat.info/oscar/instruments/view/957.

    [63] OSCAR. Satellite: ADM-Aeolus[OL]. https:// www.wmo-sat.info/oscar/satellites/view/4.

    [64] Aeolus instrumnet[OL]. http://www.esa.int/ Our-Activities/Observing-the-Earth/The- Living-Planet-Programme/Earth-Explorers/ ADM-Aeolus/Payload.

    [65] Vega Flight VV12-ADM-Aeolus-August 22, 2018[OL]. https://forum.nasaspaceflight.com/index. php topic=27667.msg1849052.

    [66] Earthcare earth explorers[OL]. http://www.esa. int/ Our-Activities/Observing-the-Earth/ The -Living-Planet-Programme/Earth- Explorers/ EarthCARE.

    [67] EarthCARE[OL]. https://earth.esa.int/ web/ guest/ missions/ esa-future-missions/ earthcare.

    [68] Christian J, Hinkel H, Maguire S,et al. The sensor test for orion relnav risk mitigation (storrm) development test objective[C]. AIAA Guidance, Navigation, and Control Conference, 2011.

    [69] Winker D M, Hunt W H, Hostetler C A. Status and performance of the CALIOP lidar[C].Proceedings of SPIE, 2004, 5575: 8-16.

    [70] Aeolus Satellite[OL]. http://www.esa.int/Our- Activities/Observing-the-Earth/Aeolus/Satellite.

    [71] Zhao Yiming, Li Yanhua, Sang Yanan,et al. Application and development direction of lidar[J]. Journal of Telemetry, Tracking and Command, 2014, 35(5): 4-22(in Chinese).

    TIAN Xiaomin, LIU Dong, XU Jiwei, WANG Zhenzhu, WANG Bangxin, WU Decheng, ZHONG Zhiqing, XIE Chenbo, WANG Yingjian. Review on Atmospheric Detection Lidar Network and Spaceborne Lidar Technology[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(6): 401
    Download Citation