• Nano-Micro Letters
  • Vol. 16, Issue 1, 141 (2024)
Zejun Sun1、†, Jinlin Yang1、†,*, Hongfei Xu1, Chonglai Jiang1、4, Yuxiang Niu1, Xu Lian1, Yuan Liu1, Ruiqi Su1, Dayu Liu1, Yu Long1、4, Meng Wang1、4, Jingyu Mao3, Haotian Yang1、4, Baihua Cui1、4, Yukun Xiao1、4, Ganwen Chen1、4, Qi Zhang1, Zhenxiang Xing5, Jisheng Pan5, Gang Wu2、**, and Wei Chen1、3、4、***
Author Affiliations
  • 1Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
  • 2Agency for Science, Technology and Research (A*STAR), Institute of High-Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
  • 3Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
  • 4Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
  • 5Agency for Science, Technology, and Research (A*STAR), Institute of Materials Research and Engineering, Innovis, 2 Fusionopolis Way, #08-03, Singapore 138634, Singapore
  • show less
    DOI: 10.1007/s40820-024-01364-x Cite this Article
    Zejun Sun, Jinlin Yang, Hongfei Xu, Chonglai Jiang, Yuxiang Niu, Xu Lian, Yuan Liu, Ruiqi Su, Dayu Liu, Yu Long, Meng Wang, Jingyu Mao, Haotian Yang, Baihua Cui, Yukun Xiao, Ganwen Chen, Qi Zhang, Zhenxiang Xing, Jisheng Pan, Gang Wu, Wei Chen. Enabling an Inorganic-Rich Interface via Cationic Surfactant for High-Performance Lithium Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 141 Copy Citation Text show less
    References

    [1] X. Ren, L. Zou, S. Jiao, D. Mei, M.H. Engelhard et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4, 896–902 (2019).

    [2] X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018).

    [3] Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018).

    [4] X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    [5] Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    [6] Y. Xia, P. Zhou, X. Kong, J. Tian, W. Zhang et al., Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023).

    [7] Z. Yu, D.G. Mackanic, W. Michaels, M. Lee, A. Pei et al., A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 3, 2761–2776 (2019).

    [8] W. Yu, J. Yang, J. Li, K. Zhang, H. Xu et al., Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 33, e2102083 (2021).

    [9] F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    [10] Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    [11] H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. J. Am. Chem. Soc. 140, 17515–17521 (2018).

    [12] J. Yang, M. Li, Z. Sun, X. Lian, Y. Wang et al., Prolonging the cycling lifetime of lithium metal batteries with a monolithic and inorganic-rich solid electrolyte interphase. Energy Environ. Sci. 16, 3837–3846 (2023).

    [13] C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141, 9422–9429 (2019).

    [14] X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    [15] B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    [16] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    [17] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown et al., LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    [18] H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998).

    [19] H. Sun, Z. Jin, C. Yang, R.L.C. Akkermans, S.H. Robertson et al., COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 22, 47 (2016).

    [20] R.E. Isele-Holder, W. Mitchell, A.E. Ismail, Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions. J. Chem. Phys. 137, 174107 (2012).

    [21] B. Shi, S. Sinha, V.K. Dhir, Molecular dynamics simulation of the density and surface tension of water by particle-particle particle-mesh method. J. Chem. Phys. 124, 204715 (2006).

    [22] G.S. Larsen, P. Lin, K.E. Hart, C.M. Colina, Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules 44, 6944–6951 (2011).

    [23] N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan et al., Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 6, 1839–1848 (2021).

    [24] X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    [25] R. Xu, X. Shen, X.-X. Ma, C. Yan, X.-Q. Zhang et al., Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface. Angew. Chem. Int. Ed. Engl. 60, 4215–4220 (2021).

    [26] D.W. Kang, J. Moon, H.-Y. Choi, H.-C. Shin, B.G. Kim, Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. J. Power Sour. 490, 229504 (2021).

    [27] K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    [28] A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).

    [29] S. Zhang, G. Yang, S. Liu, X. Li, X. Wang et al., Understanding the dropping of lithium plating potential in carbonate electrolyte. Nano Energy 70, 104486 (2020).

    [30] C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018).

    [31] D. Liu, X. Xiong, Q. Liang, X. Wu, H. Fu, An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte. Chem. Commun. 57, 9232–9235 (2021).

    [32] Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao et al., Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 34, e2108400 (2022).

    [33] X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao et al., Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33, e2007945 (2021).

    [34] Q. Zhao, N.W. Utomo, A.L. Kocen, S. Jin, Y. Deng et al., Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries. Angew. Chem. Int. Ed. 61, e202116214 (2022).

    [35] L. Fu, X. Wang, L. Wang, M. Wan, Y. Li et al., A salt-in-metal anode: stabilizing the solid electrolyte interphase to enable prolonged battery cycling. Adv. Funct. Mater. 31, 2010602 (2021).

    [36] Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. Engl. 59, 3505–3510 (2020).

    [37] S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang et al., Synergistic dual-additive electrolyte enables practical lithium-metal batteries. Angew. Chem. Int. Ed. 59, 14935–14941 (2020).

    [38] Z. Guo, X. Song, Q. Zhang, N. Zhan, Z. Hou et al., Cationic size effect promoting dissolution of nitrate anion in ester electrolyte for lithium–metal batteries. ACS Energy Lett. 7, 569–576 (2022).

    [39] Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun, et al., An Anion–Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes. Adv. Energy Mater. 10, 1903843 (2020).

    [40] X. Wang, H. Wang, M. Liu, W. Li, In-plane lithium growth enabled by artificial nitrate-rich layer: fast deposition kinetics and desolvation/adsorption mechanism. Small 16, e2000769 (2020).

    [41] H. Yang, X. Chen, N. Yao, N. Piao, Z. Wang et al., Dissolution–precipitation dynamics in ester electrolyte for high-stability lithium metal batteries. ACS Energy Lett. 6, 1413–1421 (2021).

    [42] J. Chen, Z. Sun, Z. Li, J. Liu, X. Yao et al., Highly reversible Li metal anode using a binary alloy interface. Chem. Commun. 58, 13455–13458 (2022).

    [43] D. Xiao, Q. Li, D. Luo, G. Li, H. Liu et al., Regulating the Li+-solvation structure of ester electrolyte for high-energy-density lithium metal batteries. Small 16, 2004688 (2020).

    [44] P. Xiao, R. Luo, Z. Piao, C. Li, J. Wang et al., High-performance lithium metal batteries with a wide operating temperature range in carbonate electrolyte by manipulating interfacial chemistry. ACS Energy Lett. 6, 3170–3179 (2021).

    [45] K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, T.B. Curtis, Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111, 7411–7421 (2007).

    [46] X.-R. Chen, Y.-X. Yao, C. Yan, R. Zhang, X.-B. Cheng et al., A diffusion: reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem. Int. Ed. 59, 7743–7747 (2020).

    [47] P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou et al., Formation of LiF-rich cathode-electrolyte interphase by electrolyte reduction. Angew. Chem. Int. Ed. 61, 2202731 (2022).

    [48] W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia et al., Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022).

    Zejun Sun, Jinlin Yang, Hongfei Xu, Chonglai Jiang, Yuxiang Niu, Xu Lian, Yuan Liu, Ruiqi Su, Dayu Liu, Yu Long, Meng Wang, Jingyu Mao, Haotian Yang, Baihua Cui, Yukun Xiao, Ganwen Chen, Qi Zhang, Zhenxiang Xing, Jisheng Pan, Gang Wu, Wei Chen. Enabling an Inorganic-Rich Interface via Cationic Surfactant for High-Performance Lithium Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 141
    Download Citation