• Journal of Atmospheric and Environmental Optics
  • Vol. 17, Issue 2, 213 (2022)
Feng ZHAO1、2、* and Yajuan FENG2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2022.02.003 Cite this Article
    ZHAO Feng, FENG Yajuan. Atmospheric physicochemical properties of 2-methylglyceric acid-sulfuric acid/methanesulfonic acid clusters[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 213 Copy Citation Text show less
    References

    [1] Kulmala M, Vehkamki H, Petj T, et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations[J]. Journal of Aerosol Science, 2004, 35(2): 143-176.

    [2] Zhang R Y. Getting to the critical nucleus of aerosol formation[J]. Science, 2010, 328(5984): 1366-1367.

    [3] Zhang R Y, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere[J]. Chemical Reviews, 2012, 112(3): 1957-2011.

    [4] Kulmala M. How particles nucleate and grow[J]. Science, 2003, 302(5647): 1000-1001.

    [5] Aalto P, Hmeri K, Becker E, et al. Physical characterization of aerosol particles during nucleation events[J]. Tellus B: Chemical and Physical Meteorology, 2001, 53(4): 344-358.

    [6] Metzger A, Verheggen B, Dommen J, et al. Evidence for the role of organics in aerosol particle formation under atmospheric conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6646-6651.

    [7] Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol[J]. Nature, 2014, 506(7489): 476-479.

    [8] Turpin B J, Lim H J. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass[J]. Aerosol Science and Technology, 2001, 35(1): 602-610.

    [9] Cabada J C, Pandis S N, Robinson A L. Sources of atmospheric carbonaceous particulate matter in Pittsburgh, Pennsylvania[J]. Journal of the Air & Waste Management Association, 2002, 52(6): 732-741.

    [10] Guenther A, Karl T, Harley P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature)[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3181-3210.

    [11] Claeys M, Graham B, Vas G, et al. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 2004, 303(5661): 1173-1176.

    [12] Henze D K, Seinfeld J H. Global secondary organic aerosol from isoprene oxidation[J]. Geophysical Research Letters, 2006, 33(9): L09812.

    [13] Hoyle C R, Berntsen T, Myhre G, et al. Secondary organic aerosol in the global aerosol—chemical transport model Oslo CTM2[J]. Atmospheric Chemistry and Physics, 2007, 7(21): 5675-5694.

    [14] Edney E O, Kleindienst T E, Jaoui M, et al. Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samplescollected in the eastern United States[J]. Atmospheric Environment, 2005, 39(29): 5281-5289.

    [15] Ion A C, Vermeylen R, Kourtchev I, et al. Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: Sources and diel variations[J]. Atmospheric Chemistry and Physics, 2005, 5(7): 1805-1814.

    [16] Nguyen T B, Laskin J, Laskin A, et al. Nitrogen-containing organic compounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene[J]. Environmental Science & Technology, 2011, 45(16): 6908-6918.

    [17] Zhang H, Surratt J D, Lin Y H, et al. Effect of relative humidity on SOA formation from isoprene/NO photooxidation: Enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions[J]. Atmospheric Chemistry and Physics, 2011, 11(13): 6411-6424.

    [18] Ding X, Wang X M, Xie Z Q, et al. Impacts of Siberian biomass burning on organic aerosols over the North Pacific Ocean and the Arctic: Primary and secondary organic tracers[J]. Environmental Science & Technology, 2013, 47(7): 3149-3157.

    [19] Hu Q H, Xie Z Q, Wang X M, et al. Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic[J]. Scientific Reports, 2013, 3: 2280.

    [20] von Glasow R, Crutzen P J. Model study of multiphase DMS oxidation with a focus on halogens[J]. Atmospheric Chemistry and Physics, 2004, 4(3): 589-608.

    [21] Barnes I, Hjorth J, Mihalopoulos N. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere[J]. Chemical Reviews, 2006, 106(3): 940-975.

    [22] Mauldin R L, Cantrell C A, Zondlo M, et al. Measurements of OH, H2SO4, and MSA during tropospheric ozone production about the spring equinox (TOPSE)[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D4): 8366.

    [23] Facchini M C, Decesari S, Rinaldi M, et al. Important source of marine secondary organic aerosol from biogenic amines[J]. Environmental Science & Technology, 2008, 42(24): 9116-9121.

    [24] Wyslouzil B E, Seinfeld J H, Flagan R C, et al. Binary nucleation in acid-water systems. I. Methanesulfonic acid-water[J]. The Journal of Chemical Physics, 1991, 94(10): 6827-6841.

    [25] Dall′Osto M, Ceburnis D, Monahan C, et al. Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D12): D12311.

    [26] Nishino N, Arquero K D, Dawson M L, et al. Infrared studies of the reaction of methanesulfonic acid with trimethylamine on surfaces[J]. Environmental Science & Technology, 2014, 48(1): 323-330.

    [27] Huang W, Pal R, Wang L-M, et al. Isomer identification and resolution in small gold clusters[J]. The Journal of Chemical Physics, 2010, 132(5): 054305.

    [28] Liu Y R, Huang T, Jiang S, et al. Theoretical investigation of photoelectron and infrared spectroscopy of hydrated oxalate in atmosphere[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 524-529.

    [29] Ge P, Luo G, Luo Y, et al. Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication[J]. Chemosphere, 2018, 210: 215-223.

    [30] Han Y J, Feng Y J, Miao S K, et al. Hydration of 3-hydroxy-4, 4-dimethylglutaric acid with dimethylamine complex and its atmospheric implications[J]. Physical Chemistry Chemical Physics, 2018, 20(40): 25780-25791.

    [31] Werner H J, Knowles P J, Knizia G, et al. Molpro: A general-purpose quantum chemistry program package[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2(2): 242-253.

    [32] McGrath M J, Olenius T, Ortega I K, et al. Atmospheric Cluster Dynamics Code: A flexible method for solution of the birth-death equations[J]. Atmospheric Chemistry and Physics, 2012, 12(5): 2345-2355.

    [33] da Silva A M, Chakrabarty S, Chaudhuri P. Hydrogen-bonded glycine-HCN complexes in gas phase: Structure, energetics, electric properties and cooperativity[J]. Molecular Physics, 2015, 113(5): 447-462.

    ZHAO Feng, FENG Yajuan. Atmospheric physicochemical properties of 2-methylglyceric acid-sulfuric acid/methanesulfonic acid clusters[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 213
    Download Citation