[3] Broslavets Y Y, Ambartsumyan D M, Semenov V G, et al. Multifrequency solid-state ring laser gyroscope based on YAG_Cr4+[C]// 2021 28th Saint Petersburg Inter. Conf. on Integrated Navigation Systems (ICINS), 2021: 1-8.
[4] John R H. Thin-film waveguides for inertial sensors[J]. Proc. SPIE, 1983.
[5] Shkel A M. Type Ⅰ and type Ⅱ micromachined vibratory gyroscopes[C]// Proc. of IEEE/ION PLANS, 2006: 586-593.
[9] Fuchs G D. Quantum control of spin and orbital states with a diamond MEMS resonator[C]// 2021 21st Inter. Conf. on Solid-State Sensors, Actuators and Microsystems (Transducers), 2021: 295.
[11] Liu Z, Zhang W, Cui F, et al. Fabrication and characterisation of microscale hemispherical shell resonator with diamond electrodes on the Si substrate[J]. Micro & Nano Lett., 2019, 14(6): 674-677.
[12] Saito D, Yang C, Heidari A, et al. Microcrystalline diamond cylindrical resonators with quality-factor up to 0.5 million[J]. Appl. Phys. Lett., 2016, 108(5): 1157-1178.
[13] Gu L T, Zhang W P, Feng J, et al. Development of a novel gear-like disk resonator applied in gyroscope[J]. Appl. Sciences, 2022, 12(14): 7342.
[14] Prikhodko I P, Zotov S A, Trusov A A, et al. Foucault pendulum on a chip: angle measuring silicon MEMS gyroscope[C]// 2011 IEEE 24th Inter. Conf. on Micro Electro Mechanical Systems, 2011.
[15] Koenig S, Rombach S, Gutmann W, et al. Towards a navigation grade Si-MEMS gyroscope[C]// 2019 DGON Inertial Sensors and Systems (ISS), 2019: 1-18.
[16] Asadian M H, Wang D, Shkel A M. Fused quartz dual-shell resonator gyroscope[J]. J. of Microelectromechanical Systems, 2022, 31(4): 533-545.
[17] Liu Z, Zhang W, Cui F, et al. Micro-manufacturing Technology of A Three-dimensional Curved Surface Diamond Structure for Gyroscope Applications[M]. IOP Publishing, 2019.
[18] Sorenson L D, Gao X, Ayazi F. 3-D micromachined hemispherical shell resonators with integrated capacitive transducers[C]// 2012 IEEE 25th Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2012.
[19] Pai P, Chowdhury F K, Mastrangelo C H, et al. MEMS-based hemispherical resonator gyroscopes[C]// Sensors, 2012 IEEE, 2012: 1-4.
[20] Eklund E J, Shkel A M. Glass blowing on a wafer level[J]. J. of Microelectromechanical Systems, 2007, 16(2): 232-239.
[21] Cho J Y, Singh S, Woo J, et al. 0.00016°/h angle random walk (ARW) and 0.0014°/h bias instability (BI) from a 5.2M-Q and 1cm precision shell integrating (PSI) gyroscope[C]// 2020 IEEE Inter. Symp. on Inertial Sensors and Systems (INERTIAL), 2020: 1-4.
[22] Cho J Y, Yan J, Gregory J A, et al. 3-dimensional blow torch-molding of fused silica microstructures[J]. J. of Microelectromechanical Systems, 2013, 22(6): 1276-1284.
[23] Cho J Y, Najafi K. A high-Q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding[C]// 2015 28th IEEE Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2015: 821-824.
[24] Nagourney T, Cho J Y, Shiari B, et al. 259 second ring-down time and 4.45 million quality factor in 5.5kHz fused silica birdbath shell resonator[C]// 2017 19th Inter. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017: 790-793.
[25] Li W, Hou Z, Shi Y, et al. Application of Micro-blowtorching Process with Whirling Platform for Enhancing Frequency Symmetry of Microshell Structure[M]. IOP Publishing, 2018.
[26] Li B, Xi X, Lu K, et al. Frequency split suppression of fused silica micro shell resonator based on rotating forming process[J]. Microsystem Technologies, 2021, 27(3): 789-799.
[27] Li W, Xi X, Lu K, et al. A novel high transduction efficiency micro shell resonator gyroscope with 16 T-shape masses using out-of-plane electrodes[J]. IEEE Sensors J., 2019, 19(13): 4820-4828.
[28] Shi Y, Lu K, Li B, et al. Micro hemispherical resonators with quality factor of 1.18 million fabricated via laser ablation[C]//2021 IEEE 34th Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2021: 6-9.
[29] Luo B, Shang J, Zhang Y. Hemispherical glass shell resonators fabricated using chemical foaming process[C]// 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 2015: 2217-21.
[30] Luo B, Shang J, Su Z, et al. Predicting height and determining mass of foaming agents for glass shell resonators[C]// 2018 IEEE Inter. Symp. on Inertial Sensors and Systems (INERTIAL), 2018: 1-2.
[31] Fegely L C, Hutchison D N, Bhave S A. Isotropic etching of 111 SCS for wafer-scale manufacturing of perfectly hemispherical silicon molds[C]// 2011 16th Inter. Solid-State Sensors, Actuators and Microsystems Conf., 2011: 2295-2298.
[32] Liu Z, Zhang W, Cui F, et al. Three-dimensional micromachined diamond birdbath shell resonator on silicon substrate[J]. Microsys. Technol., 2020, 26(4): 1293-1299.
[33] Shao P, Tavassoli V, Mayberry C L, et al. A 3D-HARPSS polysilicon microhemispherical shell resonating gyroscope_ design, fabrication, and characterization[J]. IEEE Sensors J., 2015, 15(9): 4974-4985.
[34] Wan Q, Gu H, Fan B, et al. A high symmetry polysilicon micro hemispherical resonating gyroscope with spherical electrodes[C]// 2017 IEEE Sensor, 2017: 1-3.
[35] Tavassoli V, Hamelin B, Ayazi F. Substrate-decoupled 3D micro-shell resonators[C]// 2016 IEEE Sensors, 2016: 1-3.
[36] Gray J M, Houlton J P, Gertsch J C, et al. Hemispherical Micro-resonators from Atomic Layer Deposition[M]. IOP Publishing, 2014.
[37] Putty M W. A micromachined vibrating ring gyroscope[D]. University of Michigan, 1995.
[38] Ayazi F, Najafi K. A HARPSS polysilicon vibrating ring gyroscope[J]. J. of Microelectromechanical Systems, 2001, 10(2): 169-179.
[39] He G, Najafi K. A single-crystal silicon vibrating ring gyroscope[C]// Technical Digest of Fifteenth IEEE Inter. Conf. on Micro Electro Mechanical Systems (Cat No02CH37266), 2002: 718-721.
[40] Challoner A D, Howard H G, Liu J Y. Boeing disc resonator gyroscope[C]// 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014, 2014: 504-514.
[41] Senkal D, Askari S, Ahamed M J, et al. 100K Q-factor toroidal ring gyroscope implemented in wafer-level epitaxial silicon encapsulation process[C]// 2014 IEEE 27th Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2014: 24-27.
[42] Zhou X, Xiao D, Wu X, et al. Stiffness-mass decoupled silicon disk resonator for high resolution gyroscopic application with long decay time constant (8.695s)[J]. Appl. Phys. Lett., 2016, 109(26): 263501.
[43] Xiao D, Zhou X, Li Q, et al. Honeycomb-like disk resonator with high immunity to fabrication error for gyroscopic application[C]// 2017 IEEE 30th Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2017: 1126-1129.
[44] Fan B, Guo S, Yu L, et al. A novel sixteen-sided cobweb-like disk resonator gyroscope with low as-fabricated frequency split between drive and sense modes[C]// 2018 IEEE Sensors, 2018: 1-4.
[45] Ren X, Zhou X, Tao Y, et al. Radially pleated disk resonator for gyroscopic application[J]. J. of Microelectromechanical Systems, 2021, 30(6): 825-835.
[46] Gu L, Zhang W, Lu H, et al. Flower-like disk resonator for gyroscopic application[J]. Review of Scientific Instruments, 2022, 93(11): 115006.
[47] Trusov A A, Atikyan G, Rozelle D M, et al. Flat is not dead: Current and future performance of Si-MEMS quad mass gyro (QMG) system[C]// 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014, 2014.
[48] Trusov A A, Prikhodko I P, Zotov S A, et al. Ultra-high Q silicon gyroscopes with interchangeable rate and whole angle modes of operation[C]// 2010 IEEE Sensors, 2010.
[49] Trusov A A, Prikhodko I P, Zotov S A, et al. Low-dissipation silicon tuning fork gyroscopes for rate and whole angle measurements[J]. IEEE Sensors J., 2011, 11(11): 2763-2770.
[50] Zotov S A, Prikhodko I P, Trusov A A, et al. Frequency modulation based angular rate sensor[C]// 2011 IEEE 24th Inter. Conf. on Micro Electro Mechanical Systems, 2011.
[51] Prikhodko I P, Zotov S A, Trusov A A, et al. Foucault pendulum on a chip: Rate integrating silicon MEMS gyroscope[J]. Sensors and Actuators A: Physical, 2012, 77: 67-78.
[52] Zotov S A, Simon B R, Sharma G, et al. Utilization of mechanical quadrature in silicon MEMS vibratory gyroscope to increase and expand the long term in-run bias stability[C]// 2014 Inter. Symp. on Inertial Sensors and Systems (ISISS), 2014.
[53] Askari S, Asadian M H, Kakavand K, et al. Vacuum sealed and getter activated MEMS quad mass gyroscope demonstrating better than 1.2 million quality factor[C]// 2016 IEEE Inter. Symp. on Inertial Sensors and Systems, 2016.
[54] Asadian M H, Askari S, Shkel A M. An ultrahigh vacuum packaging process demonstrating over 2 million Q-factor in MEMS vibratory gyroscopes[J]. IEEE Sensors Lett., 2017, 1(6): 1-4.
[55] Askari S, Asadian M H, Shkel A M. Performance of quad mass gyroscope in the angular rate mode[J]. Micromachines-Basel, 2021, 12(3): 266.
[56] Taheri-Tehrani P, Kline M, Izyumin I, et al. Epitaxially-encapsulated quad mass gyroscope with nonlinearity compensation[C]// 2016 IEEE 29th Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2016.
[57] Zhou B, Zhang T, Yin P, et al. Innovation of flat gyro: Center support quadruple mass gyroscope[C]// 2016 IEEE Inter. Symp. on Inertial Sensors and Systems, 2016.
[58] Zhang T, Zhou B, Yin P, et al. Optimal design of a center support quadruple mass gyroscope (CSQMG)[J]. Sensors-Basel, 2016, 16(5): 613.
[59] Zhang T, Zhou B, Yin P, et al. Multi-order system dynamic model of the center support quadruple mass gyro (CSQMG)[C]// 2016 IEEE Sensors, 2016.
[60] Song M, Zhou B, Zhang T, et al. Parametric drive of a micro rate integrating gyroscope using discrete electrodes[C]// 2017 IEEE Inter. Symp. on Inertial Sensors and Systems (INERTIAL), 2017.
[61] Zhang T, Zhou B, Song M, et al. Structural parameter identification of the center support quadruple mass gyro[J]. IEEE Sensors J., 2017, 17(12): 3765-3775.
[63] Wu G, Chua G L, Singh N, et al. A quadruple mass vibrating MEMS gyroscope with symmetric design[J]. IEEE Sensors Lett., 2018, 2(4): 1-4.
[66] Miao T, Zhou X, Wu X, et al. Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems[J]. Nature Communications, 2022, 13(1): 2352.