• Semiconductor Optoelectronics
  • Vol. 43, Issue 6, 1011 (2022)
GU Liutao1,2, ZHANG Weiping3, CUI Feng3, WU Yuting2,3..., FAN Chongyang2,3 and LU Haolin2,3|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2022112102 Cite this Article
    GU Liutao, ZHANG Weiping, CUI Feng, WU Yuting, FAN Chongyang, LU Haolin. Development of MEMS Resonator Gyroscope From Hemisphere to Plane[J]. Semiconductor Optoelectronics, 2022, 43(6): 1011 Copy Citation Text show less
    References

    [3] Broslavets Y Y, Ambartsumyan D M, Semenov V G, et al. Multifrequency solid-state ring laser gyroscope based on YAG_Cr4+[C]// 2021 28th Saint Petersburg Inter. Conf. on Integrated Navigation Systems (ICINS), 2021: 1-8.

    [4] John R H. Thin-film waveguides for inertial sensors[J]. Proc. SPIE, 1983.

    [5] Shkel A M. Type Ⅰ and type Ⅱ micromachined vibratory gyroscopes[C]// Proc. of IEEE/ION PLANS, 2006: 586-593.

    [8] Adams B, Macrae C, Entezami M, et al. The development of a high data rate atom interferometric gravimeter (HIDRAG) for gravity map matching navigation[C]// 2021 IEEE Inter. Symp. on Inertial Sensors and Systems (INERTIAL), 2021: 1-4.

    [9] Fuchs G D. Quantum control of spin and orbital states with a diamond MEMS resonator[C]// 2021 21st Inter. Conf. on Solid-State Sensors, Actuators and Microsystems (Transducers), 2021: 295.

    [11] Liu Z, Zhang W, Cui F, et al. Fabrication and characterisation of microscale hemispherical shell resonator with diamond electrodes on the Si substrate[J]. Micro & Nano Lett., 2019, 14(6): 674-677.

    [12] Saito D, Yang C, Heidari A, et al. Microcrystalline diamond cylindrical resonators with quality-factor up to 0.5 million[J]. Appl. Phys. Lett., 2016, 108(5): 1157-1178.

    [13] Gu L T, Zhang W P, Feng J, et al. Development of a novel gear-like disk resonator applied in gyroscope[J]. Appl. Sciences, 2022, 12(14): 7342.

    [14] Prikhodko I P, Zotov S A, Trusov A A, et al. Foucault pendulum on a chip: angle measuring silicon MEMS gyroscope[C]// 2011 IEEE 24th Inter. Conf. on Micro Electro Mechanical Systems, 2011.

    [15] Koenig S, Rombach S, Gutmann W, et al. Towards a navigation grade Si-MEMS gyroscope[C]// 2019 DGON Inertial Sensors and Systems (ISS), 2019: 1-18.

    [16] Asadian M H, Wang D, Shkel A M. Fused quartz dual-shell resonator gyroscope[J]. J. of Microelectromechanical Systems, 2022, 31(4): 533-545.

    [17] Liu Z, Zhang W, Cui F, et al. Micro-manufacturing Technology of A Three-dimensional Curved Surface Diamond Structure for Gyroscope Applications[M]. IOP Publishing, 2019.

    [18] Sorenson L D, Gao X, Ayazi F. 3-D micromachined hemispherical shell resonators with integrated capacitive transducers[C]// 2012 IEEE 25th Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2012.

    [19] Pai P, Chowdhury F K, Mastrangelo C H, et al. MEMS-based hemispherical resonator gyroscopes[C]// Sensors, 2012 IEEE, 2012: 1-4.

    [20] Eklund E J, Shkel A M. Glass blowing on a wafer level[J]. J. of Microelectromechanical Systems, 2007, 16(2): 232-239.

    [21] Cho J Y, Singh S, Woo J, et al. 0.00016°/h angle random walk (ARW) and 0.0014°/h bias instability (BI) from a 5.2M-Q and 1cm precision shell integrating (PSI) gyroscope[C]// 2020 IEEE Inter. Symp. on Inertial Sensors and Systems (INERTIAL), 2020: 1-4.

    [22] Cho J Y, Yan J, Gregory J A, et al. 3-dimensional blow torch-molding of fused silica microstructures[J]. J. of Microelectromechanical Systems, 2013, 22(6): 1276-1284.

    [23] Cho J Y, Najafi K. A high-Q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding[C]// 2015 28th IEEE Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2015: 821-824.

    [24] Nagourney T, Cho J Y, Shiari B, et al. 259 second ring-down time and 4.45 million quality factor in 5.5kHz fused silica birdbath shell resonator[C]// 2017 19th Inter. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017: 790-793.

    [25] Li W, Hou Z, Shi Y, et al. Application of Micro-blowtorching Process with Whirling Platform for Enhancing Frequency Symmetry of Microshell Structure[M]. IOP Publishing, 2018.

    [26] Li B, Xi X, Lu K, et al. Frequency split suppression of fused silica micro shell resonator based on rotating forming process[J]. Microsystem Technologies, 2021, 27(3): 789-799.

    [27] Li W, Xi X, Lu K, et al. A novel high transduction efficiency micro shell resonator gyroscope with 16 T-shape masses using out-of-plane electrodes[J]. IEEE Sensors J., 2019, 19(13): 4820-4828.

    [28] Shi Y, Lu K, Li B, et al. Micro hemispherical resonators with quality factor of 1.18 million fabricated via laser ablation[C]//2021 IEEE 34th Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2021: 6-9.

    [29] Luo B, Shang J, Zhang Y. Hemispherical glass shell resonators fabricated using chemical foaming process[C]// 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 2015: 2217-21.

    [30] Luo B, Shang J, Su Z, et al. Predicting height and determining mass of foaming agents for glass shell resonators[C]// 2018 IEEE Inter. Symp. on Inertial Sensors and Systems (INERTIAL), 2018: 1-2.

    [31] Fegely L C, Hutchison D N, Bhave S A. Isotropic etching of 111 SCS for wafer-scale manufacturing of perfectly hemispherical silicon molds[C]// 2011 16th Inter. Solid-State Sensors, Actuators and Microsystems Conf., 2011: 2295-2298.

    [32] Liu Z, Zhang W, Cui F, et al. Three-dimensional micromachined diamond birdbath shell resonator on silicon substrate[J]. Microsys. Technol., 2020, 26(4): 1293-1299.

    [33] Shao P, Tavassoli V, Mayberry C L, et al. A 3D-HARPSS polysilicon microhemispherical shell resonating gyroscope_ design, fabrication, and characterization[J]. IEEE Sensors J., 2015, 15(9): 4974-4985.

    [34] Wan Q, Gu H, Fan B, et al. A high symmetry polysilicon micro hemispherical resonating gyroscope with spherical electrodes[C]// 2017 IEEE Sensor, 2017: 1-3.

    [35] Tavassoli V, Hamelin B, Ayazi F. Substrate-decoupled 3D micro-shell resonators[C]// 2016 IEEE Sensors, 2016: 1-3.

    [36] Gray J M, Houlton J P, Gertsch J C, et al. Hemispherical Micro-resonators from Atomic Layer Deposition[M]. IOP Publishing, 2014.

    [37] Putty M W. A micromachined vibrating ring gyroscope[D]. University of Michigan, 1995.

    [38] Ayazi F, Najafi K. A HARPSS polysilicon vibrating ring gyroscope[J]. J. of Microelectromechanical Systems, 2001, 10(2): 169-179.

    [39] He G, Najafi K. A single-crystal silicon vibrating ring gyroscope[C]// Technical Digest of Fifteenth IEEE Inter. Conf. on Micro Electro Mechanical Systems (Cat No02CH37266), 2002: 718-721.

    [40] Challoner A D, Howard H G, Liu J Y. Boeing disc resonator gyroscope[C]// 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014, 2014: 504-514.

    [41] Senkal D, Askari S, Ahamed M J, et al. 100K Q-factor toroidal ring gyroscope implemented in wafer-level epitaxial silicon encapsulation process[C]// 2014 IEEE 27th Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2014: 24-27.

    [42] Zhou X, Xiao D, Wu X, et al. Stiffness-mass decoupled silicon disk resonator for high resolution gyroscopic application with long decay time constant (8.695s)[J]. Appl. Phys. Lett., 2016, 109(26): 263501.

    [43] Xiao D, Zhou X, Li Q, et al. Honeycomb-like disk resonator with high immunity to fabrication error for gyroscopic application[C]// 2017 IEEE 30th Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2017: 1126-1129.

    [44] Fan B, Guo S, Yu L, et al. A novel sixteen-sided cobweb-like disk resonator gyroscope with low as-fabricated frequency split between drive and sense modes[C]// 2018 IEEE Sensors, 2018: 1-4.

    [45] Ren X, Zhou X, Tao Y, et al. Radially pleated disk resonator for gyroscopic application[J]. J. of Microelectromechanical Systems, 2021, 30(6): 825-835.

    [46] Gu L, Zhang W, Lu H, et al. Flower-like disk resonator for gyroscopic application[J]. Review of Scientific Instruments, 2022, 93(11): 115006.

    [47] Trusov A A, Atikyan G, Rozelle D M, et al. Flat is not dead: Current and future performance of Si-MEMS quad mass gyro (QMG) system[C]// 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014, 2014.

    [48] Trusov A A, Prikhodko I P, Zotov S A, et al. Ultra-high Q silicon gyroscopes with interchangeable rate and whole angle modes of operation[C]// 2010 IEEE Sensors, 2010.

    [49] Trusov A A, Prikhodko I P, Zotov S A, et al. Low-dissipation silicon tuning fork gyroscopes for rate and whole angle measurements[J]. IEEE Sensors J., 2011, 11(11): 2763-2770.

    [50] Zotov S A, Prikhodko I P, Trusov A A, et al. Frequency modulation based angular rate sensor[C]// 2011 IEEE 24th Inter. Conf. on Micro Electro Mechanical Systems, 2011.

    [51] Prikhodko I P, Zotov S A, Trusov A A, et al. Foucault pendulum on a chip: Rate integrating silicon MEMS gyroscope[J]. Sensors and Actuators A: Physical, 2012, 77: 67-78.

    [52] Zotov S A, Simon B R, Sharma G, et al. Utilization of mechanical quadrature in silicon MEMS vibratory gyroscope to increase and expand the long term in-run bias stability[C]// 2014 Inter. Symp. on Inertial Sensors and Systems (ISISS), 2014.

    [53] Askari S, Asadian M H, Kakavand K, et al. Vacuum sealed and getter activated MEMS quad mass gyroscope demonstrating better than 1.2 million quality factor[C]// 2016 IEEE Inter. Symp. on Inertial Sensors and Systems, 2016.

    [54] Asadian M H, Askari S, Shkel A M. An ultrahigh vacuum packaging process demonstrating over 2 million Q-factor in MEMS vibratory gyroscopes[J]. IEEE Sensors Lett., 2017, 1(6): 1-4.

    [55] Askari S, Asadian M H, Shkel A M. Performance of quad mass gyroscope in the angular rate mode[J]. Micromachines-Basel, 2021, 12(3): 266.

    [56] Taheri-Tehrani P, Kline M, Izyumin I, et al. Epitaxially-encapsulated quad mass gyroscope with nonlinearity compensation[C]// 2016 IEEE 29th Inter. Conf. on Micro Electro Mechanical Systems (MEMS), 2016.

    [57] Zhou B, Zhang T, Yin P, et al. Innovation of flat gyro: Center support quadruple mass gyroscope[C]// 2016 IEEE Inter. Symp. on Inertial Sensors and Systems, 2016.

    [58] Zhang T, Zhou B, Yin P, et al. Optimal design of a center support quadruple mass gyroscope (CSQMG)[J]. Sensors-Basel, 2016, 16(5): 613.

    [59] Zhang T, Zhou B, Yin P, et al. Multi-order system dynamic model of the center support quadruple mass gyro (CSQMG)[C]// 2016 IEEE Sensors, 2016.

    [60] Song M, Zhou B, Zhang T, et al. Parametric drive of a micro rate integrating gyroscope using discrete electrodes[C]// 2017 IEEE Inter. Symp. on Inertial Sensors and Systems (INERTIAL), 2017.

    [61] Zhang T, Zhou B, Song M, et al. Structural parameter identification of the center support quadruple mass gyro[J]. IEEE Sensors J., 2017, 17(12): 3765-3775.

    [63] Wu G, Chua G L, Singh N, et al. A quadruple mass vibrating MEMS gyroscope with symmetric design[J]. IEEE Sensors Lett., 2018, 2(4): 1-4.

    [65] Zhou X, Zhao C, Xiao D, et al. Dynamic modulation of modal coupling in microelectromechanical gyroscopic ring resonators[J]. Nature Communications, 2019, 10(1): 4980.

    [66] Miao T, Zhou X, Wu X, et al. Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems[J]. Nature Communications, 2022, 13(1): 2352.

    GU Liutao, ZHANG Weiping, CUI Feng, WU Yuting, FAN Chongyang, LU Haolin. Development of MEMS Resonator Gyroscope From Hemisphere to Plane[J]. Semiconductor Optoelectronics, 2022, 43(6): 1011
    Download Citation