• Advanced Photonics
  • Vol. 5, Issue 4, 046008 (2023)
Alessia Suprano1, Danilo Zia1, Mathias Pont2, Taira Giordani1, Giovanni Rodari1, Mauro Valeri1, Bruno Piccirillo3、4, Gonzalo Carvacho1, Nicolò Spagnolo1, Pascale Senellart2, Lorenzo Marrucci3, and Fabio Sciarrino1、*
Author Affiliations
  • 1Sapienza Università di Roma, Dipartimento di Fisica, Roma, Italy
  • 2Université Paris-Saclay, UMR 9001, Centre for Nanosciences and Nanotechnology, CNRS, Palaiseau, France
  • 3Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy
  • 4INFN - Sezione di Napoli, Napoli, Italy
  • show less
    DOI: 10.1117/1.AP.5.4.046008 Cite this Article Set citation alerts
    Alessia Suprano, Danilo Zia, Mathias Pont, Taira Giordani, Giovanni Rodari, Mauro Valeri, Bruno Piccirillo, Gonzalo Carvacho, Nicolò Spagnolo, Pascale Senellart, Lorenzo Marrucci, Fabio Sciarrino. Orbital angular momentum based intra- and interparticle entangled states generated via a quantum dot source[J]. Advanced Photonics, 2023, 5(4): 046008 Copy Citation Text show less
    References

    [1] H. Rubinsztein-Dunlop et al. Roadmap on structured light. J. Opt., 19, 013001(2016).

    [2] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [3] M. P. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [4] L. Torner, J. P. Torres, S. Carrasco. Digital spiral imaging. Opt. Express, 13, 873-881(2005).

    [5] D. S. Simon, A. V. Sergienko. Two-photon spiral imaging with correlated orbital angular momentum states. Phys. Rev. A, 85, 043825(2012).

    [6] N. Uribe-Patarroyo et al. Object identification using correlated orbital angular momentum states. Phys. Rev. Lett., 110, 043601(2013).

    [7] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt. Express, 12, 3377-3382(2004).

    [8] A. E. Willner et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66(2015).

    [9] M. Malik et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt. Express, 20, 13195-13200(2012).

    [10] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [11] J. Baghdady et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing. Opt. Express, 24, 9794-9805(2016).

    [12] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [13] G. Gibson et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [14] M. Krenn et al. Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. U. S. A., 113, 13648-13653(2016).

    [15] D. Cozzolino et al. High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol., 2, 1900038(2019).

    [16] M. Krenn et al. Twisted photon entanglement through turbulent air across Vienna. Proc. Natl. Acad. Sci. U. S. A., 112, 14197-14201(2015).

    [17] M. Malik et al. Multi-photon entanglement in high dimensions. Nat. Photonics, 10, 248-252(2016).

    [18] D. Cozzolino et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photonics, 1, 046005(2019).

    [19] Y. Zhou et al. Using all transverse degrees of freedom in quantum communications based on a generic mode sorter. Opt. Express, 27, 10383-10394(2019).

    [20] X.-L. Wang et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516-519(2015).

    [21] M. Mirhosseini et al. High-dimensional quantum cryptography with twisted light. New J. Phys., 17, 033033(2015).

    [22] A. Sit et al. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006-1010(2017).

    [23] F. Bouchard et al. Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express, 26, 22563-22573(2018).

    [24] F. Cardano et al. Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun., 7, 11439(2016).

    [25] F. Cardano et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun., 8, 15516(2017).

    [26] I. Buluta, F. Nori. Quantum simulators. Science, 326, 108-111(2009).

    [27] B. P. Lanyon et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys., 5, 134-140(2009).

    [28] T. C. Ralph, K. J. Resch, A. Gilchrist. Efficient Toffoli gates using qudits. Phys. Rev. A, 75, 022313(2007).

    [29] B. Hiesmayr, M. De Dood, W. Löffler. Observation of four-photon orbital angular momentum entanglement. Phys. Rev. Lett., 116, 073601(2016).

    [30] H. Bechmann-Pasquinucci, A. Peres. Quantum cryptography with 3-state systems. Phys. Rev. Lett., 85, 3313-3316(2000).

    [31] L. Sheridan, V. Scarani. Security proof for quantum key distribution using qudit systems. Phys. Rev. A, 82, 030301(2010).

    [32] A. Aiello et al. Quantumlike nonseparable structures in optical beams. New J. Phys., 17, 043024(2015).

    [33] M. Li et al. Transverse spinning of particles in highly focused vector vortex beams. Phys. Rev. A, 95, 053802(2017).

    [34] F. Cardano, L. Marrucci. Spin-orbit photonics. Nat. Photonics, 9, 776-778(2015).

    [35] G. Vallone et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett., 113, 060503(2014).

    [36] V. D’Ambrosio et al. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun., 3, 961(2012).

    [37] S. Slussarenko et al. Universal unitary gate for single-photon spin-orbit four-dimensional states. Phys. Rev. A, 80, 022326(2009).

    [38] E. Nagali et al. Polarization control of single photon quantum orbital angular momentum states. Opt. Express, 17, 18745-18759(2009).

    [39] E. Nagali et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nat. Photonics, 3, 720-723(2009).

    [40] L.-P. Deng, H. Wang, K. Wang. Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic. J. Opt. Soc. Am. B, 24, 2517-2520(2007).

    [41] Y. Chen et al. Mapping twisted light into and out of a photonic chip. Phys. Rev. Lett., 121, 233602(2018).

    [42] B. P. da Silva et al. Spin–orbit laser mode transfer via a classical analogue of quantum teleportation. J. Phys. B Atomic Mol. Opt. Phys., 49, 055501(2016).

    [43] V. Parigi et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun., 6, 7706(2015).

    [44] T. Giordani et al. Machine learning-based classification of vector vortex beams. Phys. Rev. Lett., 124, 160401(2020).

    [45] A. R. C. Pinheiro et al. Vector vortex implementation of a quantum game. J. Opt. Soc. Am. B, 30, 3210-3214(2013).

    [46] Y. Kozawa, D. Matsunaga, S. Sato. Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica, 5, 86-92(2018).

    [47] A. Suprano et al. Propagation of structured light through tissue-mimicking phantoms. Opt. Express, 28, 35427-35437(2020).

    [48] E. Polino et al. Photonic quantum metrology. AVS Quantum Sci., 2, 024703(2020).

    [49] R. Fickler et al. Quantum entanglement of high angular momenta. Science, 338, 640-643(2012).

    [50] S. Berg-Johansen et al. Classically entangled optical beams for high-speed kinematic sensing. Optica, 2, 864-868(2015).

    [51] C. K. Hong, Z. Y. Ou, L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 59, 2044-2046(1987).

    [52] F. Bouchard et al. Two-photon interference: the Hong–Ou–Mandel effect. Rep. Progr. Phys., 84, 012402(2020).

    [53] E. Karimi et al. Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference. Phys. Rev. A, 89, 013829(2014).

    [54] Y. Zhang et al. Hong-Ou-Mandel interference of entangled hermite-Gauss modes. Phys. Rev. A, 94, 033855(2016).

    [55] M. Hiekkamäki, R. Fickler. High-dimensional two-photon interference effects in spatial modes. Phys. Rev. Lett., 126, 123601(2021).

    [56] B. Chen et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol., 16, 302-307(2021).

    [57] R. Fickler et al. Real-time imaging of quantum entanglement. Sci. Rep., 3, 1914(2013).

    [58] E. Yao et al. Observation of quantum entanglement using spatial light modulators. Opt. Express, 14, 13089-13094(2006).

    [59] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [60] L. Marrucci et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt., 13, 064001(2011).

    [61] T. Stav et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101-1104(2018).

    [62] G. Brassard et al. Limitations on practical quantum cryptography. Phys. Rev. Lett., 85, 1330-1333(2000).

    [63] N. Somaschi et al. Near-optimal single-photon sources in the solid state. Nat. Photonics, 10, 340-345(2016).

    [64] H. Wang et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 13, 770-775(2019).

    [65] R. Uppu et al. Scalable integrated single-photon source. Sci. Adv., 6, eabc8268(2020).

    [66] N. Tomm et al. A bright and fast source of coherent single photons. Nat. Nanotechnol., 16, 399-403(2021).

    [67] E. Waks et al. Quantum cryptography with a photon turnstile. Nature, 420, 762(2002).

    [68] R. Collins et al. Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source. J. Appl. Phys., 107, 073102(2010).

    [69] J.-P. Li et al. Multiphoton graph states from a solid-state single-photon source. ACS Photonics, 7, 1603-1610(2020).

    [70] D. Istrati et al. Sequential generation of linear cluster states from a single photon emitter. Nat. Commun., 11, 5501(2020).

    [71] J.-P. Li et al. Heralded nondestructive quantum entangling gate with single-photon sources. Phys. Rev. Lett., 126, 140501(2021).

    [72] A. Dousse et al. Ultrabright source of entangled photon pairs. Nature, 466, 217-220(2010).

    [73] K. Takemoto et al. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep., 5, 14383(2015).

    [74] T. Giordani et al. Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett., 122, 020503(2019).

    [75] A. Suprano et al. Dynamical learning of a photonics quantum-state engineering process. Adv. Photonics, 3, 066002(2021).

    [76] V. D’Ambrosio et al. Entangled vector vortex beams. Phys. Rev. A, 94, 030304(2016).

    [77] E. Karimi et al. Spin-orbit hybrid entanglement of photons and quantum contextuality. Phys. Rev. A, 82, 022115(2010).

    [78] D. Huber et al. Strain-tunable GAAS quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett., 121, 033902(2018).

    [79] J. Torres, A. Alexandrescu, L. Torner. Quantum spiral bandwidth of entangled two-photon states. Phys. Rev. A, 68, 050301(2003).

    [80] S. P. Walborn et al. Spatial correlations in parametric down-conversion. Phys. Rep., 495, 87-139(2010).

    [81] N. H. Valencia et al. Entangled ripples and twists of light: radial and azimuthal Laguerre–Gaussian mode entanglement. J. Opt., 23, 104001(2021).

    [82] Y. H. Shih, C. O. Alley. New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett., 61, 2921-2924(1988).

    [83] S. E. Thomas et al. Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett., 126, 233601(2021).

    [84] H. Ollivier et al. Hong-Ou-Mandel interference with imperfect single photon sources. Phys. Rev. Lett., 126, 063602(2021).

    [85] E. Nagali et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett., 103, 013601(2009).

    [86] J. C. Garcia-Escartin, P. Chamorro-Posada. Swap test and Hong-Ou-Mandel effect are equivalent. Phys. Rev. A, 87, 052330(2013).

    [87] B. Ndagano, A. Forbes. Entanglement distillation by Hong-Ou-Mandel interference with orbital angular momentum states. APL Photonics, 4, 016103(2019).

    Alessia Suprano, Danilo Zia, Mathias Pont, Taira Giordani, Giovanni Rodari, Mauro Valeri, Bruno Piccirillo, Gonzalo Carvacho, Nicolò Spagnolo, Pascale Senellart, Lorenzo Marrucci, Fabio Sciarrino. Orbital angular momentum based intra- and interparticle entangled states generated via a quantum dot source[J]. Advanced Photonics, 2023, 5(4): 046008
    Download Citation