• Journal of Atmospheric and Environmental Optics
  • Vol. 15, Issue 6, 448 (2020)
Jitong ZHOU1、2、*, Huanqin WANG2, Juntao HU1, Jie YANG2, Qiang SUN2, Fajun YU2, Huaqiao GUI3, and Jianguo LIU3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2020.06.005 Cite this Article
    ZHOU Jitong, WANG Huanqin, HU Juntao, YANG Jie, SUN Qiang, YU Fajun, GUI Huaqiao, LIU Jianguo. Development of Portable Ultrafine Particle Sizer for Motor Vehicle Emission[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 448 Copy Citation Text show less
    References

    [1] Hinds W C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles[M]. New Jersey: John Wiley & Sons, 2011.

    [2] Liu X Y, Bai X X. Fine particulate matter pollution in North China: Seasonal-spatial variations, source apportionment, sector and regional transport contributions[J]. Environmental Research, 2020, 184: 109368.

    [3] Teng Yu. Discussion on the present situation of atmospheric particulate pollution and its prevention and control measures[J]. Development and the Environment, 2019, 31(05): 67-71 (in Chinese).

    [4] Cavan M C, Zhu H W, Li C G, et al. On-road gaseous and particulate emissions from GDI vehicles with and without gasoline particulate filters (GPFs) using portable emissions measurement systems (PEMS)[J]. Science of the Total Environment, 2020, 710: 136366.

    [5] Brook R D, Franklin B, Cascio W, et al. Air pollution and cardiovascular disease a statement for healthcare professionals from the expert panel on population and prevention science of the American heart association[J]. Circulation, 2004, 109(21): 2655-2671.

    [6] Hu Min, He Lingyan, Huang Xiaofeng, et al. Physical and Chemical Characteristics, Sources and Formation Mechanism of Fine and Ultrafine Particles in Beijing Atmosphere[M]. Beijing: Science Press, 2009: 6-8 (in Chinese).

    [7] Hu Bin, Chen Rui, Xu Jianxun, et al. Health effects of ambient ultrafine(nano) particles in haze[J]. Chinese Science Bulletin, 2015, 60(30): 2808-2823 (in Chinese).

    [8] Liu Jieqiong. A Spectrometer for Measuring Particle Size Distributions in the Range of 3 nm to 10 μ m[D]. Beijing: Doctorial Dissertation of Tsinghua University, 2014 (in Chinese).

    [9] Nel A. Air pollution-related illness: Effects of particles[J]. Science, 2005, 308(5723): 804-806.

    [10] Pope C A, Dockery D W. Health effects of fine particulate air pollution: Lines that connect[J]. Journal of the Air and Waste Management Association, 2006, 56(6): 709-742.

    [11] Brunekreef B, Holgate S T. Air pollution and health[J]. Lancet, 2002, 360(9341): 1233-1242.

    [12] Chen Yang, Xia Ping. An overview of vehicle emission system technologies and relevant research[J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2012, 25(1): 33-36 (in Chinese).

    [13] Zhang Shanshan. Research on detection technology of vehicle exhaust particles based on light scattering[J]. Computer and Digital Engineering, 2019, 47(5): 1254-1257 (in Chinese).

    [14] Baron P A, Mazumder M K, Cheng Y S, et al. Real-Time Techniques for Aerodynamic Size Measurement[M]. New Jersey: John Wiley & Sons, 2011: 313-338.

    [15] Wang Jie, Dai Haiting, Liu Jianguo, et al. Design and implementation of particle size grading system based on electromigration characteristics of ultra-fine particulate matter[C]// Chinese Optical Society, Proceedings of the first National Conference on Environmental Optics, 2012: 398-398 (in Chinese).

    [16] Fan Xiaoxiao. Number Concentration, Size Distribution and Effective Density of Particles Emitted by Light Duty Vehicles[D]. Beijing: Master Dissertation of Tsinghua University, 2016 (in Chinese).

    [17] Wang S C, Flagan R C. Scanning electrical mobility spectrometer[J]. Aerosol Science and Technology, 1990, 13(2): 230-240.

    [18] Pui D Y H, Fruin S, McMurry P H. Unipolar diffusion charging of ultrafine aerosols[J]. Aerosol Science and Technology, 1988, 8(2): 173-187.

    [19] Romay F J, Pui D Y H, Adachi M. Unipolar diffusion charging of aerosol particles at low pressure[J]. Aerosol Science & Technology, 1991, 15(1): 60-68.

    [20] Chen D R, Pui D Y H. High efficiency, high throughput unipolar aerosol charger for nanoparticles[J]. Journal of Nanoparticle Research, 1999, 1(1): 115-126.

    [21] Li L, Chen D R. Performance study of a DC-corona-based particle charger for charge conditioning[J]. Journal of Aerosol Science, 2011, 42(2): 87-99.

    [22] Yu Tongzhu. Research on Key Technologies of On-Line Measurement of Sampling and Number Concentration of Ultrafine Particles in Motor Vehicle[D]. Hefei: Doctorial Dissertation of University of Science and Technology of China, 2018 (in Chinese).

    [23] Yu T Z, Yang Y X, et al. Design and evaluation of a unipolar aerosol article charger with built-in electrostatic precipitator[J]. Instrumentation Science and Technology, 2018, 46(3): 326-347.

    [24] Liu Q L. Ultrafine Particle Generation and Measurement[D]. Virginia: Doctorial Dissertation of Virginia Commonwealth University, 2015: 95-107.

    [25] Intra P, Tippayawong N. An overview of differential mobility analyzers for size classification of nanometer-sized aerosol particles[J]. Songklanakarin Journal of Science Technology, 2008, 30(2): 243-256.

    [26] Knutson E O, Whitby K T. Aerosol classification by electric mobility: Apparatus, theory, and applications[J]. Journal of Aerosol Science, 1975, 6(6): 443-451.

    [27] Liu Q L, Chen D R. Experimental evaluation of miniature plate DMAs (mini-plate DMAs) for future ultrafine particle (UFP) sensor network[J]. Aerosol Science & Technology, 2016, 50(3): 297-307.

    [28] Zhang S H, Akutsu Y, Russell L M. Radial differential mobility analyzer[J]. Aerosol Science and Technology, 1995, 23(3): 357-372.

    [29] Russell L M, Stolzenburg M R, Zhang S H. Radially classified aerosol detector for aircraft-based submicron aerosol measurements[J]. Journal of Atmospheric and Oceanic Technology, 1996, 13(3): 598-609.

    [30] Ranjan M, Dhaniyala S. Theory and design of a new miniature electrical-mobility aerosol spectrometer[J]. Journal of Aerosol Science, 2007, 38(9): 950-963.

    [31] Steer B, Gorbunov B, Muir R. Portable planar DMA: Development and tests[J]. Aerosol Science and Technology. 2014, 48(3): 251-260.

    [32] Zhang M, Wexler A S. Cross flow ion mobility spectrometry: Theory and initial prototype testing[J]. International Journal of Mass Spectrometry, 2006, 258(1-3): 13-20.

    [33] Santos J P. Performance evaluation of a high-resolution parallel-plate differential mobility analyzer[J]. Atmospheric Chemistry and Physics, 2009, 8(5): 2419-2429.

    [34] Chen M J, Wang H Q, Sun Q. Simulation of miniature PDMA for ultrafine-particle measurement[J]. Atmosphere, 2019, 10(3): 116.

    [35] Li W L, Li L, Chen D R. Technical note: A new deconvolution scheme for the retrieval of true DMA transfer function from tandem DMA data[J]. Aerosol Science and Technology, 2006, 40(12): 1052-1057.

    [36] Cao Yangyang, Wang Huanqin, Qin Feihu, et al. Optimum design of small Faraday cup for ultrafine particle monitor[J]. Instrument Technique and Sensor, 2018, (2): 48-51, 57 (in Chinese).

    [37] Sun Q, Hu J T, Wang H Q, et al. Design and evaluation of a mini-Faraday cup for portable ultrafine particle sizer[C]// IOP Conference Series: Earth and Environmental Science, 2019, 227: 062040.

    [38] Wang Ruining, Hu Qingyao, Ren Hongjuan, et al. Particle size distribution of PM emission from in-use gasoline and diesel vehicles[J]. Environmental Science, 2020, 41(3): 1151-1157 (in Chinese).

    ZHOU Jitong, WANG Huanqin, HU Juntao, YANG Jie, SUN Qiang, YU Fajun, GUI Huaqiao, LIU Jianguo. Development of Portable Ultrafine Particle Sizer for Motor Vehicle Emission[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 448
    Download Citation