• Optics and Precision Engineering
  • Vol. 22, Issue 11, 3129 (2014)
WANG Zhong-liang1,2,*, FENG Yan1, and WANG Li1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/ope.20142211.3129 Cite this Article
    WANG Zhong-liang, FENG Yan, WANG Li. Compressive sensing imaging and reconstruction of pushbroom hyperspectra[J]. Optics and Precision Engineering, 2014, 22(11): 3129 Copy Citation Text show less
    References

    [1] SUN L, HU B L, WANG SH, et al.. Compressive sampling spectral modulated technique[J]. Acta Photonica Sinica, 2013, 42(8): 912-915. (in Chinese)

    [2] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

    [3] CANDES E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.

    [4] CHEN T, LI ZH W, WANG J L, et al.. Imaging system of single pixel camera based on compressed sensing [J]. Opt. Precision Eng., 2012, 20(11):2523-2530. (in Chinese)

    [5] YANG H CH, GAO X, ZHANG T. Compressing-sensing cone-beam CT short-scan reconstruction based on projection-contraction [J]. Opt. Precision Eng., 2014, 22(3): 770-778. (in Chinese)

    [6] WANG L J, SHI G M, LI P, et al.. Compressive sensing multiple description image coding with hybrid sampling [J]. Opt. Precision Eng., 2013, 21(3): 724-733. (in Chinese)

    [7] ZHU M, GAO W, GUO L Q.Application of compressed sensing theory in image processing [J]. Chinese Optics, 2011, 4(5): 441-447. (in Chinese)

    [8] DUARTE M F, DAVENPORT M A, TAKHAR D, et al.. Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.

    [9] SUN T, KELLY K. Compressive sensing hyperspectral imager [C]. Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, San Jose, California, 2009: CTuA5.

    [10] WAGADARIKAR A, JOHN R, WILLETT Rt, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): 44-51.

    [11] XIAO L L, LIU K, HAN D P, et al.. Application of compressed sensing in optical imaging[J]. Journal of Applied Optics, 2012, 33(1): 71-77. (in Chinese)

    [12] FENG Y, JIA Y B, CAO Y M, et al.. Compressed sensing projection and compound regularizer reconstruction for hyperspectral images [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1466-1473. (in Chinese)

    [13] WANG Z, YAN F, JIA Y. Spatial-spectral compressive sensing of hyperspectral image [C]. Third IEEE International Conference on Information Science and Technology, Yangzhou, Jiangsu, China, 2013: 1256-1259.

    [14] JIA Y B, FENG Y, WANG ZH L, et al.. Hyperspectral compressive sensing recovery via spectrum structure similarity [J]. Journal of Electronics & Information Technology, 2014, 36(6): 1406-1412. (in Chinese)

    [15] JI ZH X, KONG F Q. Hyperspectral image compressed sensing based on linear filter between bands [J]. Acta Photonica Sinica, 2012, 41(1): 82-86. (in Chinese)

    [16] AUGUST Y, VACHMAN C, STERN A. Spatial versus spectral compression ratio in compressive sensing of hyperspectral imaging [C]. Compressive Sensing II, Baltimore, MD, United states, 2013:1-10.

    [17] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit [J]. SIAM Review, 2001, 43(1):129-159.

    [18] JIAO L CH, YANG SH Y, LIU F, et al.. Development and prospect of compressive sensing [J]. Acta Electronica Sinica, 2011, 39(7): 1651-1662. (in Chinese)

    [19] HORNBECK L J. From cathode rays to digital micromirrors: A history of electronic projection display technology [J]. Ti Technical Journal, 1998, 15(3): 7-46.

    [20] CANDES E J, ROMBERG J K. The l1-magic toolbox [OL]. http://www.l1-magic.org, 2008.

    [21] BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al.. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.

    [22] VANE G, GREEN R O, CHRIEN T G, et al.. The airborne visible infrared imaging spectrometer(AVIRIS)[J]. Remote Sensing of Environment, 1993, 44(2):127-143.

    [23] NASCIMENTO J M P, DIAS J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 98-910.

    [24] CLARK R N, SWAYZE G A, WISE R, et al.. USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231[EB/OL].(2007-09-13)[2007-09-20].http: //speclab.cr.usgs.gov/spectral.lib06.

    CLP Journals

    [1] WANG Zhong-liang, FENG Yan, XIAO Hua, WANG Li. Distributed compressive sensing imaging and reconstruction of hyperspectral imagery[J]. Optics and Precision Engineering, 2015, 23(4): 1131

    [2] HE Fang, WANG Rong, YU Qiang, JIA Wei-min. Feature Extraction of Hyperspectral Images of Weighted Spatial and Spectral Locality Preserving Projection (WSSLPP)[J]. Optics and Precision Engineering, 2017, 25(1): 263

    WANG Zhong-liang, FENG Yan, WANG Li. Compressive sensing imaging and reconstruction of pushbroom hyperspectra[J]. Optics and Precision Engineering, 2014, 22(11): 3129
    Download Citation