• Frontiers of Optoelectronics
  • Vol. 6, Issue 2, 199 (2013)
Abbas GHADIMI1、*, Vahid AHMADI2, and Fatemeh SHAHSHAHANI3
Author Affiliations
  • 1Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran 145151775, Iran
  • 2Department of Electrical Engineering, Tarbiat Modares University, Tehran 14115-194, Iran
  • 3Department of Physics, Alzahra University, Tehran 1993893973, Iran
  • show less
    DOI: 10.1007/s12200-013-0317-y Cite this Article
    Abbas GHADIMI, Vahid AHMADI, Fatemeh SHAHSHAHANI. SAGCM avalanche photodiode with additional layer and nonuniform electric field[J]. Frontiers of Optoelectronics, 2013, 6(2): 199 Copy Citation Text show less
    References

    [1] Campbell J C. Recent advances in telecommunications avalanche photodiodes. Journal of Lightwave Technology, 2007, 25(1): 109-121

    [2] Kasper B L, Campbell J C. Multigigbit-per-second avalanche photodiode lightwave receivers. Journal of Lightwave Technology, 1987, 5(10): 1351-1364

    [3] Tarof L E, Yu J, Bruce R, Knight D G, Baird T, Oosterbrink B. High-frequency performance of separate absorption and multiplication InP/InGaAs avalanche photodiodes. IEEE Photonics Technology Letters, 1993, 5(6): 672-674

    [4] Masudy-Panah S, Moravvej-Farshi M K, Jalali M. Temperature dependent characteristics of submicron GaAs avalanche photodiodes obtained by a nonlocal analysis. Journal of Optical Communications and Networking, 2009, 282(17): 3630-3636

    [5] Liew S C, Tan C H, Goh Y L, Marshall A R J, David J P R. Modeling of avalanche multiplication and excess noise factor in In0.52Al0.48As avalanche photodiodes using a simple Monte Carlo model. Journal of Applied Physics, 2008, 104(19): 13114-13119

    [6] Banoushi A, Ahmadi V, Setayeshi S. An analytical approach to study the effect of carrier velocities on the gain and breakdown voltage of avalanche photodiodes. Journal of Lightwave Technology, 2002, 20(4): 696-699

    [7] Ng B K, David J P R, Plimmer S A, Rees G J, Tozer R C, Hopkinson M, Hill G. Avalanche multiplication characteristics of Al0.8 Ga0.2 As diodes. IEEE Transactions on Electron Devices, 2001, 48(10): 2198-2204

    [8] Bandyopadhyay A, Deen M J, Tarof L E, Clark W A. Simplified approaches to time-domain modeling of avalanche photodiodes. IEEE Journal of Quantum Electronics, 1998, 34(4): 691-699

    [9] Chen W, Liu S. PIN avalanche photodiodes model for circuit simulation. IEEE Journal of Quantum Electronics, 1998, 32(12): 2105-2111

    [10] El-Batawy Y M, Deen M J. Modeling and optimization of resonant cavity enhanced-separated absorption graded charge multiplicationavalanche photodetector (RCE-SAGCM-APD). IEEE Transactions on Electron Devices, 2003, 50(3): 790-801

    [11] El-Batawy Y M, Deen M J. Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD). IEEE Transactions on Electron Devices, 2005, 52(3): 335-344

    [12] Banoushi A, Kardan M R, Naeini M A. A circuit model for separate absorption, grading, charge, and multiplication avalanche photodiodes. Solid-State Electronics, 2005, 49(6): 871-877

    [13] Mai Y X, Wang G. Equivalent circuit modeling of separate absorption grading charge multiplication avalanche photodiode. Journal of Lightwave Technology, 2009, 27(9): 1197-1202

    [14] Wang G, Wu J. A novel equivalent circuit model for separate absorption grading charge multiplication avalanche photodiode (APD)-based optical receiver. Journal of Lightwave Technology, 2010, 28(5): 784-790

    [15] Zhao Y L, Mo Q Y. An equivalent circuit model for separate absorption grading charge multiplication avalanche photodiode. Journal of Physics: Conference Series, 2011, 276(1): 012107

    [16] Plimmer S A, Tan C H, David J P R, Grey R, Li K F, Rees G J. The effect of an electric-field gradient on avalanche noise. Applied Physics Letters, 1999, 75(19): 2963-2965

    [17] Saleh M A, Hayat M M, Sotirelis P P, Holmes A L, Campbell J C, Saleh B E A, Teich M C. Impact-ionization and noise characteristics of thin III-Vavalanche photodiodes. IEEE Transactions on Electron Devices, 2001, 48(12): 2722-2731

    [18] Goh Y L, Massey D J, Marshall A R J, Ng J S, Tan C H, Ng W K, Rees G J, Hopkinson M, David J P R, Jones S K. Avalanche multiplication in InAlAs. IEEE Transactions on Electron Devices, 2007, 54(1): 11-16

    [19] Masudy-Panah S, Ahmadi V. A closed form analytic model to study the characteristics of avalanche photodiodes. Journal of Modern Optics, 2009, 56(1): 67-72

    [20] Kim D S, Lee S Y, Lee J H, Oh G S, Kim N J, Lee J W, Kim A S, Sin Y K. Fabrication of planar InP/InGaAs avalanche photodiode without guard rings. In: Proceedings of IEEE Lasers and Electro-Optics Society, Annual Meeting (LEOS 96). 1996, 332-333

    [21] Tan L J J, Ng J S, Tan C H, David J P R. Avalanche noise characteristics in submicron InP diodes. IEEE Journal of Quantum Electronics, 2008, 44(4): 378-382

    [22] Tarof L E, Knight D G, Fox K E, Miner C J, Puetz N, Kim H B. Planar InP/InGaAs avalanche photodetectors with a partial charge sheet in device periphery. Applied Physics Letters, 1990, 57(7): 670-672

    Abbas GHADIMI, Vahid AHMADI, Fatemeh SHAHSHAHANI. SAGCM avalanche photodiode with additional layer and nonuniform electric field[J]. Frontiers of Optoelectronics, 2013, 6(2): 199
    Download Citation