• Nano-Micro Letters
  • Vol. 15, Issue 1, 241 (2023)
Hairui Bai1, Ruijie Ma4、*, Wenyan Su5、9、**, Top Archie Dela Peña6、7, Tengfei Li1, Lingxiao Tang1, Jie Yang8, Bin Hu10, Yilin Wang1, Zhaozhao Bi1, Yueling Su9, Qi Wei6, Qiang Wu1、***, Yuwei Duan9, Yuxiang Li5, Jiaying Wu7, Zicheng Ding9, Xunfan Liao3, Yinjuan Huang1, Chao Gao11, Guanghao Lu10, Mingjie Li6, Weiguo Zhu2, Gang Li4、****, Qunping Fan1、2、3、*****, and Wei Ma1、******
Author Affiliations
  • 1State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
  • 2Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, People’s Republic of China
  • 3Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, People’s Republic of China
  • 4Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, 999077 Hong Kong, People’s Republic of China
  • 5School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, People’s Republic of China
  • 6Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077 Hong Kong, People’s Republic of China
  • 7Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha Guangzhou, People’s Republic of China
  • 8School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
  • 9Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
  • 10Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, People’s Republic of China
  • 11Xi’an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01208-0 Cite this Article
    Hairui Bai, Ruijie Ma, Wenyan Su, Top Archie Dela Peña, Tengfei Li, Lingxiao Tang, Jie Yang, Bin Hu, Yilin Wang, Zhaozhao Bi, Yueling Su, Qi Wei, Qiang Wu, Yuwei Duan, Yuxiang Li, Jiaying Wu, Zicheng Ding, Xunfan Liao, Yinjuan Huang, Chao Gao, Guanghao Lu, Mingjie Li, Weiguo Zhu, Gang Li, Qunping Fan, Wei Ma. Green-Solvent Processed Blade-Coating Organic Solar Cells with an Efficiency Approaching 19% Enabled by Alkyl-Tailored Acceptors[J]. Nano-Micro Letters, 2023, 15(1): 241 Copy Citation Text show less
    References

    [1] H. Guo, C.-Y. Yang, X. Zhang, A. Motta, K. Feng et al., Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 599, 67–73 (2021).

    [2] L. Ding, Z.-D. Yu, X.-Y. Wang, Z.-F. Yao, Y. Lu et al., Polymer semiconductors: synthesis, processing, and applications. Chem. Rev. 123, 7421–7497 (2023).

    [3] G. Ding, T. Chen, M. Wang, X. Xia, C. He et al., Solid additive-assisted layer-by-layer processing for 19% efficiency binary organic solar cells. Nano-Micro Lett. 15, 92 (2023).

    [4] J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip et al., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    [5] Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang et al., Tandem organic solar cell with 20.2% efficiency. Joule 6, 171–184 (2022).

    [6] T. Li, Y. Wu, J. Zhou, M. Li, J. Wu et al., Butterfly effects arising from starting materials in fused-ring electron acceptors. J. Am. Chem. Soc. 142, 20124–20133 (2020).

    [7] K. Jiang, J. Zhang, C. Zhong, F.R. Lin, F. Qi et al., Suppressed recombination loss in organic photovoltaics adopting a planar-mixed heterojunction architecture. Nat. Energy 7, 1076–1086 (2022).

    [8] L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan et al., Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022).

    [9] B. Pang, C. Liao, X. Xu, L. Yu, R. Li et al., Benzo[d]thiazole based wide bandgap donor polymers enable 19.54% efficiency organic solar cells along with desirable batch-to-batch reproducibility and general applicability. Adv. Mater. 35, 2300631 (2023).

    [10] T. Chen, S. Li, Y. Li, Z. Chen, H. Wu et al., Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% Efficiency. Adv. Mater. 35, 2300400 (2023).

    [11] Y. Wei, Z. Chen, G. Lu, N. Yu, C. Li et al., Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv. Mater. 34, 2204718 (2022).

    [12] J. Fu, P.W.K. Fong, H. Liu, C.S. Huang, X. Lu et al., 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14, 1760 (2023).

    [13] B. Pang, C. Liao, X. Xu, S. Peng, J. Xia et al., BN-bond-embedded triplet terpolymers with small singlet-triplet energy gaps for suppressing non-radiative recombination and improving blend morphology in organic solar Cells. Adv. Mater. 35, 2211871 (2023).

    [14] C. Han, J. Wang, S. Zhang, L. Chen, F. Bi et al., Over 19% Efficiency organic solar cells by regulating multidimensional intermolecular interactions. Adv. Mater. 35, 2208986 (2023).

    [15] D. Li, N. Deng, Y. Fu, C. Guo, B. Zhou et al., Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv. Mater. 35, 2208211 (2023).

    [16] J. Zhang, Q. Huang, K. Zhang, T. Jia, J. Jing et al., Random copolymerization strategy for non-halogenated solvent-processed all-polymer solar cells with a high efficiency of over 17%. Energy Environ. Sci. 15, 4561–4571 (2022).

    [17] H. Lu, H. Wang, G. Ran, S. Li, J. Zhang et al., Random terpolymer enabling high-efficiency organic solar cells processed by nonhalogenated solvent with a low nonradiative energy loss. Adv. Funct. Mater. 32, 2203193 (2022).

    [18] Y. Qin, Y. Xu, Z. Peng, J. Hou, H. Ade, Low temperature aggregation transitions in n3 and y6 acceptors enable double-annealing method that yields hierarchical morphology and superior efficiency in nonfullerene organic solar cells. Adv. Funct. Mater. 30, 2005011 (2020).

    [19] S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang, Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 4, 2004–2016 (2020).

    [20] W. Liu, R. Zhang, Q. Wei, C. Zhu, J. Yuan et al., Manipulating molecular aggregation and crystalline behavior of A-DA’D-A type acceptors by side chain engineering in organic solar cells. Aggregate 3, e183 (2022).

    [21] L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang et al., Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater. 31, 1903441 (2019).

    [22] J. Wan, L. Zeng, X. Liao, Z. Chen, S. Liu et al., All-green solvent-processed planar heterojunction organic solar cells with outstanding power conversion efficiency of 16%. Adv. Funct. Mater. 32, 2107567 (2022).

    [23] R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu et al., A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule 4, 407–419 (2020).

    [24] Y. Chen, F. Bai, Z. Peng, L. Zhu, J. Zhang et al., Asymmetric alkoxy and alkyl substitution on nonfullerene acceptors enabling high-performance organic solar cells. Adv. Energy Mater. 11, 2003141 (2021).

    [25] X. Kong, C. Zhu, J. Zhang, L. Meng, S. Qin et al., The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A-DA′D-A type acceptors. Energy Environ. Sci. 15, 2011–2020 (2022).

    [26] K. Ma, W. Feng, H. Liang, H. Chen, Y. Wang et al., Modulation of alkyl chain length on the thiazole side group enables over 17% efficiency in all-small-molecule organic solar cells. Adv. Funct. Mater. 33, 2214926 (2023).

    [27] S. Li, R. Zhang, M. Zhang, J. Yao, Z. Peng et al., Tethered small-molecule acceptors simultaneously enhance the efficiency and stability of polymer solar cells. Adv. Mater. 35, 2206563 (2023).

    [28] L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-Terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15, 23 (2023).

    [29] H.R. Bai, Q. An, H.F. Zhi, M. Jiang, A. Mahmood et al., A random terpolymer donor with similar monomers enables 18.28% efficiency binary organic solar cells with well polymer batch reproducibility. ACS Energy Lett. 7, 3045–3057 (2022).

    [30] Y. Chen, R. Ma, T. Liu, Y. Xiao, H.K. Kim et al., Side-chain engineering on y-series acceptors with chlorinated end groups enables high-performance organic solar cells. Adv. Energy Mater. 11, 2003777 (2021).

    [31] C. Zhang, A. Song, Q. Huang, Y. Cao, Z. Zhong et al., All-polymer solar cells and photodetectors with improved stability enabled by terpolymers containing antioxidant side chains. Nano-Micro Lett. 15, 140 (2023).

    [32] A. Mishra, G.D. Sharma, Harnessing the structure-performance relationships in designing non-fused ring acceptors for organic solar cells. Angew. Chem. Int. Ed. 62, e202219245 (2023).

    [33] J. Xue, H. Zhao, B. Lin, Y. Wang, Q. Zhu et al., Nonhalogenated dual-slot-die processing enables high-efficiency organic solar cells. Adv. Mater. 34, 2202659 (2022).

    [34] Y. Zhang, K. Liu, J. Huang, X. Xia, J. Cao et al., Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nat. Commun. 12, 4815 (2021).

    [35] H. Zhao, B. Lin, J. Xue, H.B. Naveed, C. Zhao et al., Kinetics manipulation enables high-performance thick ternary organic solar cells via R2R-compatible slot-die coating. Adv. Mater. 34, 2105114 (2022).

    [36] H.R. Bai, Q. An, M. Jiang, H.S. Ryu, J. Yang et al., Isogenous asymmetric-symmetric acceptors enable efficient ternary organic solar cells with thin and 300 nm thick active layers simultaneously. Adv. Funct. Mater. 32, 2200807 (2022).

    [37] J. Yuan, D. Liu, H. Zhao, B. Lin, X. Zhou et al., Patterned blade coating strategy enables the enhanced device reproducibility and optimized morphology of organic solar cells. Adv. Energy Mater. 11, 2100098 (2021).

    [38] B. Liu, H. Sun, J.-W. Lee, Z. Jiang, J. Qiao et al., Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization. Nat. Commun. 14, 967 (2023).

    [39] H. Chen, R. Zhang, X. Chen, G. Zeng, L. Kobera et al., A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 6, 1045–1053 (2021).

    [40] G. Cai, Z. Chen, X. Xia, Y. Li, J. Wang et al., Pushing the efficiency of high open-circuit voltage binary organic solar cells by vertical morphology tuning. Adv. Sci. 9, 2200578 (2022).

    [41] Q. Fan, R. Ma, Z. Bi, X. Liao, B. Wu et al., 19.28% Efficiency and stable polymer solar cells enabled by introducing an nir-absorbing guest acceptor. Adv. Funct. Mater. 33, 2211385 (2023).

    [42] X. Zhao, Q. An, H. Zhang, C. Yang, A. Mahmood et al., Double asymmetric core optimizes crystal packing to enable selenophene-based acceptor with over 18 % efficiency in binary organic solar cells. Angew. Chem. Int. Ed. 62, e202216340 (2023).

    [43] Q. Fan, H. Fu, Q. Wu, Z. Wu, F. Lin et al., Multi-selenophene-containing narrow bandgap polymer acceptors for all-polymer solar cells with over 15 % efficiency and high reproducibility. Angew. Chem. Int. Ed. 60, 15935–15943 (2021).

    [44] X. Wang, J. Wang, P. Wang, C. Han, F. Bi et al., Host/guest alloy aggregations enable high-performance ternary organic photovoltaics. Adv. Mater. 35, 2305652 (2023).

    [45] M. Jiang, H.-F. Zhi, B. Zhang, C. Yang, A. Mahmood et al., Controlling morphology and voltage loss with ternary strategy triggers efficient all-small-molecule organic solar cells. ACS Energy Lett. 8, 1058–1067 (2023).

    [46] C. Li, J. Zhou, J. Song, J. Xu, H. Zhang et al., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    [47] J. Yang, W.-L. Ding, Q.-S. Li, Z.-S. Li, Theoretical study of non-fullerene acceptors using end-capped groups with different electron-withdrawing abilities toward efficient organic solar cells. J. Phys. Chem. Lett. 13, 916–922 (2022).

    [48] Y. Guo, G. Han, Y. Yi, The intrinsic role of the fusion mode and electron-deficient core in fused-ring electron acceptors for organic photovoltaics. Angew. Chem. Int. Ed. 61, e202205975 (2022).

    [49] Q. Fan, R. Ma, J. Yang, J. Gao, H. Bai et al., Unidirectional sidechain engineering to construct dual-asymmetric acceptors for 19.23 % efficiency organic solar cells with low energy loss and efficient charge transfer. Angew. Chem. Int. Ed. 62, e202308307 (2023).

    [50] S. Chen, L. Feng, T. Jia, J. Jing, Z. Hu et al., High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors. Sci. China Chem. 64, 1192–1199 (2021).

    [51] A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15, 40 (2023).

    [52] R. Ma, Q. Fan, T.A. Dela Peña, B. Wu, H. Liu et al., Unveiling the morphological and physical mechanism of burn-in loss alleviation by ternary matrix toward stable and efficient all-polymer solar cells. Adv. Mater. 35, 2212275 (2023).

    [53] Y. Wang, M.B. Price, R.S. Bobba, H. Lu, J. Xue et al., Quasi-homojunction organic nonfullerene photovoltaics featuring fundamentals distinct from bulk heterojunctions. Adv. Mater. 34, 2206717 (2022).

    [54] Q. Wu, Y. Yu, X. Xia, Y. Gao, T. Wang et al., High-performance organic photovoltaic modules using eco-friendly solvents for various indoor application scenarios. Joule 6, 2138–2151 (2022).

    [55] T. Xu, J. Lv, Z. Chen, Z. Luo, G. Zhang et al., Deciphering the role of side-chain engineering and solvent vapor annealing for binary all-small-molecule organic solar cells. Adv. Funct. Mater. 33, 2210549 (2023).

    [56] J. Wan, Y. Xia, J. Fang, Z. Zhang, B. Xu et al., Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency. Nano-Micro Lett. 13, 44 (2021).

    [57] Y. Cai, Q. Li, G. Lu, H.S. Ryu, Y. Li et al., Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat. Commun. 13, 2369 (2022).

    [58] S. Hao, X. Xu, L. Yu, S. Peng, J. Xia et al., Saddle-shaped third component with out-of-plane electrostatic dipole for realizing high-performance photovoltaic donor terpolymers. Adv. Mater. 35, 2301732 (2023).

    [59] H. Lu, D. Li, G. Ran, Y.-N. Chen, W. Liu et al., Designing high-performance wide bandgap polymer donors by the synergistic effect of introducing carboxylate and fluoro substituents. ACS Energy Lett. 7, 3927–3935 (2022).

    [60] Q. Chen, Y.H. Han, L.R. Franco, C.F.N. Marchiori et al., Effects of flexible conjugation-break spacers of non-conjugated polymer acceptors on photovoltaic and mechanical properties of all-polymer solar cells. Nano-Micro Lett. 14, 164 (2022).

    Hairui Bai, Ruijie Ma, Wenyan Su, Top Archie Dela Peña, Tengfei Li, Lingxiao Tang, Jie Yang, Bin Hu, Yilin Wang, Zhaozhao Bi, Yueling Su, Qi Wei, Qiang Wu, Yuwei Duan, Yuxiang Li, Jiaying Wu, Zicheng Ding, Xunfan Liao, Yinjuan Huang, Chao Gao, Guanghao Lu, Mingjie Li, Weiguo Zhu, Gang Li, Qunping Fan, Wei Ma. Green-Solvent Processed Blade-Coating Organic Solar Cells with an Efficiency Approaching 19% Enabled by Alkyl-Tailored Acceptors[J]. Nano-Micro Letters, 2023, 15(1): 241
    Download Citation