• International Journal of Extreme Manufacturing
  • Vol. 4, Issue 2, 22002 (2022)
Xin Hou, Jingyang Li, Yuanzhe Li, and Yu Tian*
Author Affiliations
  • State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ac5e13 Cite this Article
    Xin Hou, Jingyang Li, Yuanzhe Li, Yu Tian. Intermolecular and surface forces in atomic-scale manufacturing[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 22002 Copy Citation Text show less
    References

    [1] Fang F 2020 Atomic and close-to-atomic scale manufacturing: perspectives and measures Int. J. Extreme Manuf. 2 030201

    [2] Kim M-S, Purushothaman M, Kim H-T, Song H-J and Park J-G 2017 Adhesion and removal behavior of particulate contaminants from EUV mask materials Colloids Surf. A 535 83-88

    [3] Chen L, Wen J, Zhang P, Yu B, Chen C, Ma T, Lu X, Kim S H and Qian L 2018 Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions Nat. Commun. 9 1542

    [4] Khajetoorians A A, Wiebe J, Chilian B and Wiesendanger R 2011 Realizing all-spin-based logic operations atom by atom Science 332 1062-4

    [5] Huff T, Labidi H, Rashidi M, Livadaru L, Dienel T, Achal R, Vine W, Pitters J and Wolkow R A 2018 Binary atomic silicon logic Nat. Electron. 1 636-43

    [6] Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 A single-atom quantum memory Nature 473 190-3

    [7] Fang F, Zhang N, Guo D, Ehmann K, Cheung B, Liu K and Yamamura K 2019 Towards atomic and close-to-atomic scale manufacturing Int. J. Extreme Manuf. 1 012001

    [8] Zhao D and Lu X 2013 Chemical mechanical polishing: theory and experiment Friction 1 306-26

    [9] Bullen D, Chung S-W, Wang X, Zou J, Mirkin C A and Liu C 2004 Parallel dip-pen nanolithography with arrays of individually addressable cantilevers Appl. Phys. Lett. 84 789-91

    [10] Kim H 2003 Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing J. Vac. Sci. Technol. B 21 2231-61

    [11] Yip W and To S 2018 Sustainable manufacturing of ultra-precision machining of titanium alloys using a magnetic field and its sustainability assessment Sustain. Mater. Technol. 16 38-46

    [12] Israelachvili J N 2011 Intermolecular and Surface Forces (New York: Academic)

    [13] Zheng Q, Jiang B, Liu S, Weng Y, Lu L, Xue Q, Zhu J, Jiang Q, Wang S and Peng L 2008 Self-retracting motion of graphite microflakes Phys. Rev. Lett. 100 067205

    [14] Liu Z, Yang J, Grey F, Liu J Z, Liu Y, Wang Y, Yang Y, Cheng Y and Zheng Q 2012 Observation of microscale superlubricity in graphite Phys. Rev. Lett. 108 205503

    [15] Zhang Z et al 2020 Macroscale superlubricity enabled by graphene-coated surfaces Adv. Sci. 7 1903239

    [16] Hod O, Meyer E, Zheng Q and Urbakh M 2018 Structural superlubricity and ultralow friction across the length scales Nature 563 485-92

    [17] Zhang Z, Du Y, Huang S, Meng F, Chen L, Xie W, Chang K, Zhang C, Lu Y and Lin C et al 2020 Macroscale superlubricity: macroscale superlubricity enabled by graphene-coated surfaces Adv. Sci. 7 2070023

    [18] Zhang J, Chen P, Yuan B, Ji W, Cheng Z and Qiu X 2013 Real-space identification of intermolecular bonding with atomic force microscopy Science 342 611-4

    [19] Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed W M and Jaspars M 2010 Organic structure determination using atomic-resolution scanning probe microscopy Nat. Chem. 2 821-5

    [20] Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelinek P 2014 Mechanism of high-resolution STM/AFM imaging with functionalized tips Phys. Rev. B 90 085421

    [21] Han T, Zhang C, Li J, Yuan S, Chen X, Zhang J and Luo J 2019 Origins of superlubricity promoted by hydrated multivalent ions J. Phys. Chem. Lett. 11 184-90

    [22] Derjaguin B, Churaev N and Muller V 1987 The Derjaguin—Landau—Verwey—Overbeek (DLVO) theory of stability of lyophobic colloids Surface Forces (Berlin: Springer) pp 293-310

    [23] Chavoshi S Z and Luo X 2016 Molecular dynamics simulation study of deformation mechanisms in 3C-SiC during nanometric cutting at elevated temperatures Mater. Sci. Eng. A 654 400-17

    [24] Wang J, Zhang X, Fang F and Chen R 2018 A numerical study on the material removal and phase transformation in the nanometric cutting of silicon Appl. Surf. Sci. 455 608-15

    [25] Lai M, Zhang X D and Fang F Z 2012 Study on critical rake angle in nanometric cutting Appl. Phys. A 108 809-18

    [26] Lennard-Jones J 1937 The equation of state of gases and critical phenomena Physica 4 941-56

    [27] Komanduri R and Raff L 2001 A review on the molecular dynamics simulation of machining at the atomic scale Proc. Inst. Mech. Eng. B 215 1639-72

    [28] Wen J, Ma T, Zhang W, van Duin A C and Lu X 2017 Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2: reaxFF reactive molecular dynamics simulations Comput. Mater. Sci. 131 230-8

    [29] Jia W, Wang H, Chen M, Lu D, Lin L, Car R, Weinan E and Zhang L 2020 Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning SC20: Int. Conf. for High Performance Computing, Networking, Storage and Analysis (IEEE) pp 1-14

    [30] Wang L-F, Ma T-B, Hu Y-Z and Wang H 2012 Atomic-scale friction in graphene oxide: an interfacial interaction perspective from first-principles calculations Phys. Rev. B 86 125436

    [31] An Q, Jaramillo-Botero A, Liu W-G and Goddard III W A 2015 Reaction pathways of GaN (0001) growth from trimethylgallium and ammonia versus triethylgallium and hydrazine using first principle calculations J. Phys. Chem. C 119 4095-103

    [32] Iskandarova I, Knizhnik A, Rykova E, Bagatur’yants A, Potapkin B and Korkin A 2003 First-principle investigation of the hydroxylation of zirconia and hafnia surfaces Microelectron. Eng. 69 587-93

    [33] Eigler D M and Schweizer E K 1990 Positioning single atoms with a scanning tunnelling microscope Nature 344 524-6

    [34] Bartels L, Meyer G and Rieder K-H 1997 Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip Phys. Rev. Lett. 79 697

    [35] Eigler D M, Lutz C and Rudge W 1991 An atomic switch realized with the scanning tunnelling microscope Nature 352 600-3

    [36] Budau P and Grigorescu M 1998 Atom transfer in the STM double-well potential during a voltage pulse Phys. Rev. B 57 6313

    [37] Kobayashi N, Hirose K and Tsukada M 1996 First-principles study of Na atom transfer induced by the tip of a STM Surf. Sci. 348 299-304

    [38] Custance O, Perez R and Morita S 2009 Atomic force microscopy as a tool for atom manipulation Nat. Nanotechnol. 4 803-10

    [39] Sugimoto Y, Pou P, Custance O, Jelinek P, Abe M, Perez R and Morita S 2008 Complex patterning by vertical interchange atom manipulation using atomic force microscopy Science 322 413-7

    [40] Wu Z, Liu J, Li Y, Cheng Z, Li T, Zhang H, Lu Z and Yang B 2015 Self-assembly of nanoclusters into mono-, few-, and multilayered sheets via dipole-induced asymmetric van der Waals attraction ACS nano 9 6315-23

    [41] Zhao C, Wang X, Kong J, Ang J M, Lee P S, Liu Z and Lu X 2016 Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: a novel van der Waals heterostructure for lithium-ion batteries ACS Appl. Mater. Interfaces 8 2372-9

    [42] Caplan M R, Moore P N, Zhang S, Kamm R D and Lauffenburger D A 2000 Self-assembly of a β-sheet protein governed by relief of electrostatic repulsion relative to van der Waals attraction Biomacromolecules 1 627-31

    [43] Zhao K and Mason T G 2007 Directing colloidal self-assembly through roughness-controlled depletion attractions Phys. Rev. Lett. 99 268301

    [44] Hu S-W, Sheng Y-J and Tsao H-K 2012 Self-assembly of organophilic nanoparticles in a polymer matrix: depletion interactions J. Phys. Chem. C 116 1789-97

    [45] Maia R, Macedo R H and Shawkey M D 2012 Nanostructural self-assembly of iridescent feather barbules through depletion attraction of melanosomes during keratinization J. R. Soc. Interface 9 734-43

    [46] Baker J L, Widmer-Cooper A, Toney M F, Geissler P L and Alivisatos A P 2010 Device-scale perpendicular alignment of colloidal nanorods Nano Lett. 10 195-201

    [47] Clark T D, Tien J, Duffy D C, Paul K E and Whitesides G M 2001 Self-assembly of 10-μm-sized objects into ordered three-dimensional arrays J. Am. Chem. Soc. 123 7677-82

    [48] Velikov K, Durst F and Velev O 1998 Direct observation of the dynamics of latex particles confined inside thinning water- air films Langmuir 14 1148-55

    [49] Asakura S and Oosawa F 1954 On interaction between two bodies immersed in a solution of macromolecules J. Chem. Phys. 22 1255-6

    [50] Baranov D, Fiore A, Van Huis M, Giannini C, Falqui A, Lafont U, Zandbergen H, Zanella M, Cingolani R and Manna L 2010 Assembly of colloidal semiconductor nanorods in solution by depletion attraction Nano Lett. 10 743-9

    [51] Savenko S and Dijkstra M 2006 Phase behavior of a suspension of colloidal hard rods and nonadsorbing polymer J. Chem. Phys. 124 234902

    [52] Ashton D J, Jack R L and Wilding N B 2013 Self-assembly of colloidal polymers via depletion-mediated lock and key binding Soft Matter 9 9661-6

    [53] Wei P, Yan X and Huang F 2015 Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions Chem. Soc. Rev. 44 815-32

    [54] Pluth M D and Raymond K N 2007 Reversible guest exchange mechanisms in supramolecular host-guest assemblies Chem. Soc. Rev. 36 161-71

    [55] Basilio N and Pischel U 2016 Drug delivery by controlling a supramolecular host-guest assembly with a reversible photoswitch Chem. Eur. J. 22 15208-11

    [56] Tan S, Shi H, Fu L, Ma J, Du X, Song J, Liu Y, Zeng Q, Xu H and Wan J 2020 Superlubricity of fullerene derivatives induced by host-guest assembly ACS Appl. Mater. Interfaces 12 18924-33

    [57] Suntola T and Antson J 1977 Method for producing compound thin films ( Google Patents)

    [58] Ritala M and Leskela M 2002 Atomic layer deposition Handbook of Thin Films (Amsterdam: Elsevier) pp 103-59

    [59] Pore V, Hatanpaa T, Ritala M and Leskela M 2009 Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium J. Am. Chem. Soc. 131 3478-80

    [60] Fang F Z, Zhang X D, Gao W, Guo Y B, Byrne G and Hansen H N 2017 Nanomanufacturing—perspective and applications CIRP Ann. 66 683-705

    [61] Taniguchi N 1983 Current status in, and future trends of, ultraprecision machining and ultrafine materials processing CIRP Ann. 32 573-82

    [62] McKeown P 1987 The role of precision engineering in manufacturing of the future CIRP Ann. 36 495-501

    [63] Fang F Z, Wu H and Liu Y C 2005 Modelling and experimental investigation on nanometric cutting of monocrystalline silicon Int. J. Mach. Tools Manuf. 45 1681-6

    [64] Fang F Z and Venkatesh V C 1998 Diamond cutting of silicon with nanometric finish CIRP Ann. 47 45-49

    [65] Cheong W and Zhang L 2000 Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation Nanotechnology 11 173

    [66] Zhang L and Zarudi I 2001 Towards a deeper understanding of plastic deformation in mono-crystalline silicon Int. J. Mech. Sci. 43 1985-96

    [67] Liu K, Li X P and Liang S Y 2007 The mechanism of ductile chip formation in cutting of brittle materials Int. J. Adv. Manuf. Technol. 33 875-84

    [68] Wu W, Xu Z, Fang F, Liu B, Xiao Y, Chen J, Wang X and Liu H 2014 Decrease of FIB-induced lateral damage for diamond tool used in nano cutting Nucl. Instrum. Methods Phys. Res. B 330 91-98

    [69] Wang M, Wang W and Lu Z 2012 Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study Int. J. Adv. Manuf. Technol. 60 473-85

    [70] Shahinian H, Navare J A, Bodlapati C, Zaytsev D, Kang D and Ravindra D 2019 High speed ultraprecision machining of germanium Proc. SPIE 11175 111750E

    [71] Lawson B L, Kota N and Ozdoganlar O B 2008 Effects of crystallographic anistropy on orthogonal micromachining of single-crystal aluminum J. Manuf. Sci. Eng. 130 031116

    [72] Xie W and Fang F 2020 Mechanism of atomic and close-to-atomic scale cutting of monocrystalline copper Appl. Surf. Sci. 503 144239

    [73] Abdulkadir L N, Abou-El-Hossein K, Jumare A I, Liman M M, Olaniyan T A and Odedeyi P B 2018 Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining Int. J. Adv. Manuf. Technol. 98 317-71

    [74] Pei Q, Lu C, Fang F and Wu H 2006 Nanometric cutting of copper: a molecular dynamics study Comput. Mater. Sci. 37 434-41

    [75] Goel S, Kovalchenko A, Stukowski A and Cross G 2016 Influence of microstructure on the cutting behaviour of silicon Acta Mater. 105 464-78

    [76] Kim C-J, Mayor R and Ni J 2012 Molecular dynamics simulations of plastic material deformation in machining with a round cutting edge Int. J. Precis. Eng. Manuf. 13 1303-9

    [77] Goel S, Luo X, Reuben R L and Rashid W B 2011 Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting Nanoscale Res. Lett. 6 1-9

    [78] Garcia R, Knoll A W and Riedo E 2014 Advanced scanning probe lithography Nat. Nanotechnol. 9 577-87

    [79] Pires D, Hedrick J L, De Silva A, Frommer J, Gotsmann B, Wolf H, Despont M, Duerig U and Knoll A W 2010 Nanoscale three-dimensional patterning of molecular resists by scanning probes Science 328 732-5

    [80] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C, Klimeck G and Simmons M Y 2012 A single-atom transistor Nat. Nanotechnol. 7 242-6

    [81] Keyvani A, Tamer M S, van Es M H and Sadeghian H 2016 Simultaneous AFM nano-patterning and imaging for photomask repair, metrology, inspection, and process control for microlithography XXX International Society for Optics and Photonics p 977818

    [82] Deng J, Zhang L, Dong J and Cohen P H 2016 AFM-based 3D nanofabrication using ultrasonic vibration assisted nanomachining J. Manuf. Process. 24 195-202

    [83] Miyake S and Kim J 2004 Nanoprocessing of silicon by mechanochemical reaction using atomic force microscopy and additional potassium hydroxide solution etching Nanotechnology 16 149

    [84] Chien F-S, Chou Y, Chen T, Hsieh W-F, Chao T-S and Gwo S 2001 Nano-oxidation of silicon nitride films with an atomic force microscope: chemical mapping, kinetics, and applications J. Appl. Phys. 89 2465-72

    [85] Li Y, Maynor B W and Liu J 2001 Electrochemical AFM ‘dip-pen’ nanolithography J. Am. Chem. Soc. 123 2105-6

    [86] Bozkaya D and Müftü S 2009 A material removal model for CMP based on the contact mechanics of pad, abrasives, and wafer J. Electrochem. Soc. 156 H890

    [87] Xu W, Lu X, Pan G, Lei Y and Luo J 2010 Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate Appl. Surf. Sci. 256 3936-40

    [88] Cheng J, Wang T, Mei H, Zhou W and Lu X 2014 Synergetic effect of potassium molybdate and benzotriazole on the CMP of ruthenium and copper in KIO4-based slurry Appl. Surf. Sci. 320 531-7

    [89] Zhang Z, Cui J, Zhang J, Liu D, Yu Z and Guo D 2019 Environment friendly chemical mechanical polishing of copper Appl. Surf. Sci. 467 5-11

    [90] Xie W, Zhang Z, Liao L, Liu J, Su H, Wang S and Guo D 2020 Green chemical mechanical polishing of sapphire wafers using a novel slurry Nanoscale 12 22518-26

    [91] Zhang Z, Liao L, Wang X, Xie W and Guo D 2020 Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy Appl. Surf. Sci. 506 144670

    [92] Liao L, Zhang Z, Meng F, Liu D, Wu B, Li Y and Xie W 2021 A novel slurry for chemical mechanical polishing of single crystal diamond Appl. Surf. Sci. 564 150431

    [93] Gao P, Liu T, Zhang Z, Meng F, Ye R-P and Liu J 2021 Non-spherical abrasives with ordered mesoporous structures for chemical mechanical polishing Sci. China Mater. 64 2747-63

    [94] Si L, Guo D, Luo J and Lu X 2010 Monoatomic layer removal mechanism in chemical mechanical polishing process: a molecular dynamics study J. Appl. Phys. 107 064310

    [95] Chen R, Luo J, Guo D and Lu X 2008 Extrusion formation mechanism on silicon surface under the silica cluster impact studied by molecular dynamics simulation J. Appl. Phys. 104 104907

    [96] Si L, Guo D, Luo J, Lu X and Xie G 2011 Abrasive rolling effects on material removal and surface finish in chemical mechanical polishing analyzed by molecular dynamics simulation J. Appl. Phys. 109 084335

    [97] Watanabe T, Fujiwara H, Noguchi H, Hoshino T and Ohdomari I 1999 Novel interatomic potential energy function for Si, O mixed systems Jpn. J. Appl. Phys. 38 L366

    [98] Wen J, Ma T, Zhang W, Psofogiannakis G, van Duin A C T, Chen L, Qian L, Hu Y and Lu X 2016 Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2 interface in aqueous environment: molecular dynamics simulations using ReaxFF reactive force field Appl. Surf. Sci. 390 216-23

    [99] van Duin A C, Dasgupta S, Lorant F and Goddard W A 2001 ReaxFF: a reactive force field for hydrocarbons J. Phys. Chem. A 105 9396-409

    [100] Zhang Z, Wang B, Kang R, Zhang B and Guo D 2015 Changes in surface layer of silicon wafers from diamond scratching CIRP Ann. 64 349-52

    [101] Wang B et al 2018 New deformation-induced nanostructure in silicon Nano Lett. 18 4611-7

    [102] Zhang Z, Wang X, Meng F, Liu D, Huang S, Cui J, Wang J and Wen W 2022 Origin and evolution of a crack in silicon induced by a single grain grinding J. Manuf. Process. 75 617-26

    [103] Li C, Zhao D, Xie L and Lu X 2020 Mechanism analysis of nanoparticle removal induced by the Marangoni-driven flow in post-CMP cleaning ECS J. Solid State Sci. Technol. 9 023002

    [104] Wen X, Bai P, Li Y, Cao H, Li S, Wang B, Fang J, Meng Y, Ma L and Tian Y 2021 Effects of abrasive particles on liquid superlubricity and mechanisms for their removal Langmuir 37 3628-36

    [105] Ming L, Jieli W, Yongqian W, Yan X, Dongni Z, Zhen H, Fugui Y and Yongjian W 2020 A review on the fabrication technology of x-ray reflector Opto-Electron. Eng. 47 200205-200201-200205-200212

    [106] Koike K, Yoshino Y, Senoo T, Seki T, Ninomiya S, Aoki T and Matsuo J 2010 Anisotropic etching using reactive cluster beams Appl. Phys. Express 3 126501

    [107] Yamauchi K, Mimura H, Inagaki K and Mori Y 2002 Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining Rev. Sci. Instrum. 73 4028-33

    [108] Mori Y, Yamauchi K and Endo K 1987 Elastic emission machining Precis. Eng. 9 123-8

    [109] Schmitt J, Nelissen W, Wallrabe U and Volklein F 2017 Implementation of smooth nanocrystalline diamond microstructures by combining reactive ion etching and ion beam etching Diam. Relat. Mater. 79 164-72

    [110] Mi S, Toros A, Graziosi T and Quack N 2019 Non-contact polishing of single crystal diamond by ion beam etching Diam. Relat. Mater. 92 248-52

    [111] Li Y, Takino H and Frost F 2017 Ion beam planarization of diamond turned surfaces with various roughness profiles Opt. Express 25 7828-38

    [112] Eyring H 1935 The activated complex in chemical reactions J. Chem. Phys. 3 107-15

    [113] Kauzmann W and Eyring H 1940 The viscous flow of large molecules J. Am. Chem. Soc. 62 3113-25

    [114] Bustamante C, Chemla Y R, Forde N R and Izhaky D 2004 Mechanical processes in biochemistry Annu. Rev. Biochem. 73 705-48

    [115] Briscoe B and Evans D 1982 The shear properties of Langmuir—Blodgett layers Proc. R. Soc. A 380 389-407

    [116] Eremets M I, Drozdov A P, Kong P and Wang H 2019 Semimetallic molecular hydrogen at pressure above 350 GPa Nat. Phys. 15 1246-9

    [117] Gutman E 1989 Mechanochemistry and Corrosion Prevention of Metals (Beijing: Science Press)

    [118] Chen L-Q 2019 Chemical potential and Gibbs free energy MRS Bull. 44 520-3

    [119] Liu C, Tian Y and Meng Y 2021 A chemical potential equation for modeling triboelectrochemical reactions on solid-liquid interfaces Front. Chem. 9 650880

    [120] Chen S et al 2018 On the limits of scalpel AFM for the 3D electrical characterization of nanomaterials Adv. Funct. Mater. 28 1802266

    [121] Pinilla-Cienfuegos E, Manas-Valero S, Navarro-Moratalla E, Tatay S, Forment-Aliaga A and Coronado E 2016 Local oxidation nanolithography on metallic transition metal dichalcogenides surfaces Appl. Sci. 6 250

    [122] Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W and Cui Y 2015 Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers Nano Lett. 15 2740-5

    [123] Chen T, Lin H, Cao Y, Yao Q and Xie J 2021 Interactions of metal nanoclusters with light: fundamentals and applications Adv. Mater. 2103918 [Online ahead of print]

    [124] Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G and McEuen P L 2007 Electromechanical resonators from graphene sheets Science 315 490-3

    [125] Hassan T, Jamshaid H, Mishra R, Khan M Q, Petru M, Novak J, Choteborsky R and Hromasova M 2020 Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste Polymers 12 654

    Xin Hou, Jingyang Li, Yuanzhe Li, Yu Tian. Intermolecular and surface forces in atomic-scale manufacturing[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 22002
    Download Citation