• Acta Photonica Sinica
  • Vol. 46, Issue 2, 223002 (2017)
CHEN Min*, ZHOU Hong-min, LUO Zhao-ming, WAN Ting, and GAO Ming-sheng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20174602.0223002 Cite this Article
    CHEN Min, ZHOU Hong-min, LUO Zhao-ming, WAN Ting, GAO Ming-sheng. Low-pass Spatial Filters with Small Angle-domain Bandwidth Based on Fibonacci Quasi-periodic Structures[J]. Acta Photonica Sinica, 2017, 46(2): 223002 Copy Citation Text show less
    References

    [1] GOODMAN J W. Introduction to Fourier optics[M]. McGraw-Hill, New York, 1988: 217-290.

    [2] AlMEIDA S P, INDEBETOUW G. Applications of optical Fourier transforms[M]. Academic Press, San Diego, 1982: 41-87.

    [3] SCHURING D, SMITH D R. Spatial filtering using media with indefinite permittivityand permeability tensors[J]. Applied Physics Letters, 2003, 82(14): 2215-2217.

    [4] ZHANG Xin, LIU Hong-jie, ZHAO Jun-pu, et al. Pinhole design of spatial filter in high energy solid-state laser system[J]. Laser & Optoelectronics Progress, 2010, 47(11): 111402.

    [5] WANG Gui-ying, ZHAO Jiu-yuan, ZHANG Ming-ke, et al. Basic study on spatial filter used in Nd-glass high power laser system[J]. Acta Physica Sinica, 1985, 34(2): 171-181.

    [6] STALIUNAS K, SNCHEZ-MORCILLO V J. Spatial filtering of light by chirped photonic crystals[J]. Physical Review A, 2009, 79(5): 053807.

    [7] LUO Z, WEN S, TANG Z, et al. Low-pass Rugate spatial filters for beam smoothing[J]. Optics Communications, 2010, 283(13): 2665-2668.

    [8] MORENO I, ARAIZA J J, AVENDANO-ALEJO M. Thin-film spatial filters[J]. Optics Letters, 2005, 30(8): 914-916.

    [9] SEREBRYANNIKOV A E, MAGATH T. Transmission through photonic crystals with multiple line defects at oblique incidence[J]. Journal of the Optical Society of America B, 2008, 25(3): 286-296.

    [10] SEREBRYANNIKOV A E, LALANNE P, PETROV A Y, et al. Wide-angle reflection-mode spatial filtering and splitting with photonic crystal gratings and single-layer rod gratings[J]. Optics Letters, 2014, 39(21): 6193-6196.

    [11] MAIGYTE L, STALIUNAS K. Spatial filtering with photonic crystals[J]. Applied Physics Reviews, 2015, 2(1): 011102.

    [12] TANG Z, FAN D, WEN S, et al. Low-pass spatial filtering using a two-dimensional self-collimating photonic crystal[J]. Chinese Optics Letters, 2007, 5(101): S211-S213.

    [13] FANG Y T. Direction and frequency filter basing on an ultra-compact structure consisting of dielectric films[J]. Optics & Laser Technology, 2010, 42(5): 850-853.

    [14] ZHENG G, SHEN B, TAN J, et al. Experimental research on spatial filtering of deformed laser beam by transmitting volume Bragg grating[J]. Chinese Optics Letters, 2011, 9(3): 030501.

    [15] ZHENG Guang-wei, CHU Xing-chun, ZHENG Qiu-rong. Development of non-focusing low-pass spatial filtering for laser beams[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050002.

    [16] LUO Z, TANG Z, XIANG Y, et al. Polarization-independent low-pass spatial filters based on one-dimensional photonic crystals containing negative-index materials[J]. Applied Physics B, 2009, 94(4): 641-646.

    [17] LUO Z, CHEN M, LIU J, et al. An approach of waveguide mode selection based on the thin-film spatial filters[J]. Optics Communications, 2016, 365: 120-124.

    [18] LUO Z, CHEN M, DENG J, et al. Low-pass spatial filters with small angle-domain bandwidth based on one-dimensional metamaterial photonic crystals[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(1): 259-262.

    [19] KANG Yong-qiang, GAO Peng, LIU Hong-mei, et al. Reflection band gap in thue-morse quasicrystal containing anisotropic left handed material[J]. Acta Photonica Sinica, 2015, 44(3): 0319004.

    [20] MAURIZ P W, VASCONCELOS M S, ALBUQUERQUE E L. Optical transmission spectra in symmetrical Fibonacci photonic multilayers[J]. Physics Letters A, 2009, 373(4): 496-500.

    [21] LIU X, ZHOU J, ZHU B Q, et al. Electro-optical tunable filter with symmetric generalized Fibonacci photonic crystal[J]. Acta Photonica Sinica, 2011, 40(11): 1723-1727.

    [22] MERLIN R, BAJEMA K, CLARKE R, et al. Quasiperiodic gaas-alas heterostructures[J]. Physical Review Letters, 1985, 55(17): 1768-1770.

    [23] ZHANG Jian, ZHENG Jie, ZHANG Yu-Shu. Fibonacci quasi-periodic superstructure fiber Bragg gratings[J]. Acta Photonica Sinica, 2009, 38(8): 2050-2054.

    [24] PASSIAS V, VALAPPIL N V, SHI Z, et al. Luminescence properties of a Fibonacci photonic quasicrystal[J]. Optics Express, 2009, 17(8): 6636-6642.

    [25] DONG Ze-dong, LIU You-wen. Optical absorption properties of quasi-periodic microstructures arranged by Fibonacci sequence[J]. Acta Optica Sinica, 2016 36(6): 0605001.

    [26] KE Jie, Zhang Jun-yong. Focusing and imaging properties of fibonacci photon sieve[J]. Acta Optica Sinica, 2015, 35(9): 0923001.

    [27] LUSK D, ABDULHALIM I, PLACIDO F. Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal[J]. Optics Communications, 2001, 198(4): 273-279.

    [28] TANG Bing-shu. Study on the transmission properties of fibonacci one-dimensional photonic crystal nanometer films in visible region[J]. Acta Photonica Sinica, 2007, 36(8): 1426-1430.

    [29] CAO Yong-jun, YANG Xu. Transmission properties of the generalized Fibonacci quasi-periodical phononic crystal[J]. Acta Physica Sinica, 2008, 57(6): 3620-3624.

    [30] ZHANG Y, WU Z, CAO Y, et al. Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal[J]. Optics Communications, 2015, 338: 168-173.

    [31] NING R, LIU S, ZhANG H, et al. Wideband absorption in Fibonacci quasi-periodic graphene-based hyperbolic metamaterials[J]. Journal of Optics, 2014, 16(12): 125108.

    [32] LIU Xiao. Analysis on the optical properties of one-dimensional generalized Fibonacci photonic crystal[D]. Ningbo: Ningbo University, 2011: 25-27.

    [33] HAUSMANN B J M, SHIELDS B J, QUAN Q, et al. Coupling of NV centers to photonic crystal nanobeams in diamond[J]. Nano Letters, 2013, 13(12): 5791-5796.

    [34] LIU Jie, TIE Sheng-nian, LU Hui-dong. Multi-channel drop filter based on two-dimensional photonic crystal[J]. Optics and Precision Engineering, 2016, 24(5): 1021-1027.

    [35] RIEDRICH-MLLER J, KIPFSTUHL L, HEPP C, et al. One-and two-dimensional photonic crystal microcavities in single crystal diamond[J]. Nature Nanotechnology, 2012, 7(1): 69-74.

    CHEN Min, ZHOU Hong-min, LUO Zhao-ming, WAN Ting, GAO Ming-sheng. Low-pass Spatial Filters with Small Angle-domain Bandwidth Based on Fibonacci Quasi-periodic Structures[J]. Acta Photonica Sinica, 2017, 46(2): 223002
    Download Citation