• Chinese Journal of Lasers
  • Vol. 49, Issue 19, 1901002 (2022)
Jian Wu*, Yuhong Wang, Hanxu Tai, Ming Zheng, and Ruonan Duan
Author Affiliations
  • School of Physics, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/CJL202249.1901002 Cite this Article Set citation alerts
    Jian Wu, Yuhong Wang, Hanxu Tai, Ming Zheng, Ruonan Duan. Low-Dimensional Indium-Based Well-Dot Composite Quantum Structures and Their Optical Properties and Application Prospects[J]. Chinese Journal of Lasers, 2022, 49(19): 1901002 Copy Citation Text show less
    References

    [1] Kim J O, Sengupta S, Barve A V et al. Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors[J]. Applied Physics Letters, 102, 011131(2013).

    [2] Miao S J, Cho Y. Toward green optoelectronics: environmental-friendly colloidal quantum dots photodetectors[J]. Frontiers in Energy Research, 9, 666534(2021).

    [3] Bayrakli I. Optically and electrically pumped grating-coupled external cavity quantum cascade laser[J]. Optical and Quantum Electronics, 54, 169(2022).

    [4] Okuno K, Mizutani K, Iida K et al. Room temperature pulsed operation of nitride nanowire-based multi-quantum shell laser diodes by MOVPE[J]. Applied Physics Express, 14, 074004(2021).

    [5] Liu W D, Xu N, He Y W et al. Mid-infrared spectral responsivity scale based on an absolute cryogenic radiometer and a tunable quantum cascade laser[J]. Metrologia, 58, 025003(2021).

    [6] Li J Y, Wang H L, Yang J et al. Voltage-temperature characteristics of InGaAs/GaAs/InGaP quantum well laser[J]. Chinese Journal of Luminescence, 41, 971-976(2020).

    [7] Yuan Y, Chai X L, Yang C G et al. 2.75-μm mid-infrared GaSb-based quantum well lasers with quinary alloy barrier[J]. Chinese Journal of Lasers, 47, 0701026(2020).

    [8] Yao Z H, Chen H M, Wang T et al. P-modulation doped 1.3-μm InAs/GaAs quantum dot lasers[J]. Chinese Journal of Lasers, 48, 1601001(2021).

    [9] Lü Z R, Zhang Z K, Wang H et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 47, 0701016(2020).

    [10] Gao X H, Cui Y Y, Levenson R M et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nature Biotechnology, 22, 969-976(2004).

    [11] Jamieson T, Bakhshi R, Petrova D et al. Biological applications of quantum dots[J]. Biomaterials, 28, 4717-4732(2007).

    [12] Hoshino A, Fujioka K, Oku T et al. Quantum dots targeted to the assigned organelle in living cells[J]. Microbiology and Immunology, 48, 985-994(2004).

    [13] Bailey R E, Smith A M, Nie S M. Quantum dots in biology and medicine[J]. Physica E: Low-Dimensional Systems and Nanostructures, 25, 1-12(2004).

    [14] Walling M A, Novak J A, Shepard J R E. Quantum dots for live cell and in vivo imaging[J]. International Journal of Molecular Sciences, 10, 441-491(2009).

    [15] Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers[J]. IEEE Journal of Quantum Electronics, 22, 1915-1921(1986).

    [16] Grundmann M, Bimberg D. Gain and threshold of quantum dot lasers: theory and comparison to experiments[J]. Japanese Journal of Applied Physics, 36, 4181-4187(1997).

    [17] Kirstaedter N, Grundmann M, Richter U et al. Low threshold, large injection laser emission from (InGa)As quantum dots[J]. Electronics Letters, 30, 1416-1417(1994).

    [18] Kirstaedter N, Schmidt O G, Ledentsov N N et al. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers[J]. Applied Physics Letters, 69, 1226-1228(1996).

    [19] Ledentsov N N, Shchukin V A, Grundmann M et al. Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth[J]. Physical Review B, 54, 8743-8750(1996).

    [20] Walter G, Chung T, Holonyak N Jr. Coupled-stripe quantum-well-assisted AlGaAs-GaAs-InGaAs-InAs quantum-dot laser[J]. Applied Physics Letters, 80, 3045-3047(2002).

    [21] Syperek M, Leszczyński P, Misiewicz J et al. Time-resolved photoluminescence spectroscopy of an InGaAs/GaAs quantum well-quantum dots tunnel injection structure[J]. Applied Physics Letters, 96, 011901(2010).

    [22] Maximov M V, Nadtochiy A M, Mintairov S A et al. Light emitting devices based on quantum well-dots[J]. Applied Sciences, 10, 1038(2020).

    [23] Sengupta S, Kim J O, Barve A V et al. Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure[J]. Applied Physics Letters, 100, 191111(2012).

    [24] Maximov M, Gordeev N, Payusov A et al. Modification of InGaAs/GaAs heterostructure density of states and optical gain using hybrid quantum well-dots[J]. Laser Physics Letters, 17, 095801(2020).

    [25] Moiseev E, Kryzhanovskaya N, Maximov M et al. Highly efficient injection microdisk lasers based on quantum well-dots[J]. Optics Letters, 43, 4554-4557(2018).

    [26] Gordeev N Y, Maximov M V, Payusov A S et al. Material gain of InGaAs/GaAs quantum well-dots[J]. Semiconductor Science and Technology, 36, 015008(2020).

    [27] Pieczarka M, Syperek M, Biegańska D et al. Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system[J]. Applied Physics Letters, 110, 221104(2017).

    [28] Chung T, Walter G, Holonyak N Jr. Coupled strained-layer InGaAs quantum-well improvement of an InAs quantum dot AlGaAs-GaAs-InGaAs-InAs heterostructure laser[J]. Applied Physics Letters, 79, 4500-4502(2001).

    [29] Mazur Y I, Liang B L, Wang Z M et al. Lengthening of the photoluminescence decay time of InAs quantum dots coupled to InGaAs/GaAs quantum well[J]. Journal of Applied Physics, 100, 054313(2006).

    [30] Walter G, Holonyak N Jr, Ryou J H et al. Room-temperature continuous photopumped laser operation of coupled InP quantum dot and InGaP quantum well InP-InGaP-In(AlGa)P-InAlP heterostructures[J]. Applied Physics Letters, 79, 1956-1958(2001).

    [31] Yu Q N, Li X, Jia Y et al. InGaAs-based well-island composite quantum-confined structure with superwide and uniform gain distribution for great enhancement of semiconductor laser performance[J]. ACS Photonics, 5, 4896-4902(2018).

    [32] Yu Q N, Zheng M, Tai H X et al. Quantum confined indium-rich cluster lasers with polarized dual-wavelength output[J]. ACS Photonics, 6, 1990-1995(2019).

    [33] Yu Q N, Jia Y, Lu W et al. Experimental characterization of true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure[J]. AIP Advances, 7, 085319(2017).

    [34] Zheng M, Yu Q N, Tai H X et al. Experimental investigation of spontaneous emission characteristics of InGaAs-based indium-rich cluster-induced special quantum structure[J]. Chinese Optics Letters, 18, 051403(2020).

    [35] Zheng M, Yu Q N, Li X et al. Ultrabroadband and independent polarization of optical amplification with InGaAs-based indium-rich cluster quantum-confined structure[J]. Applied Physics Letters, 116, 252106(2020).

    [36] Jia Y, Yu Q N, Li F et al. Experimental investigation of loss and gain characteristics of an abnormal InxGa1-xAs/GaAs quantum well structure[J]. Chinese Optics Letters, 16, 011402(2018).

    [37] Yang X J, Kiba T, Yamamura T et al. Ultrafast spin tunneling and injection in coupled nanostructures of InGaAs quantum dots and quantum well[J]. Applied Physics Letters, 104, 012406(2014).

    [38] Mazur Y I, Dorogan V G, Guzun D et al. Measurement of coherent tunneling between InGaAs quantum wells and InAs quantum dots using photoluminescence spectroscopy[J]. Physical Review B, 82, 155413(2010).

    [39] Huang L R, Yu Y, Tian P et al. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier[J]. Semiconductor Science and Technology, 24, 015009(2009).

    [40] Kondratko P K, Chuang S L, Walter G et al. Observations of near-zero linewidth enhancement factor in a quantum-well coupled quantum-dot laser[J]. Applied Physics Letters, 83, 4818-4820(2003).

    [41] Khanonkin I, Bauer S, Mikhelashvili V et al. On the principle operation of tunneling injection quantum dot lasers[J]. Progress in Quantum Electronics, 81, 100362(2022).

    [42] Khanonkin I, Eisenstein G, Lorke M et al. Carrier dynamics in a tunneling injection quantum dot semiconductor optical amplifier[J]. Physical Review B, 98, 125307(2018).

    [43] Chen R, Liu H Y, Sun H D. Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy[J]. Journal of Applied Physics, 107, 013513(2010).

    [44] Liu H Y, Hopkinson M, Harrison C N et al. Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure[J]. Journal of Applied Physics, 93, 2931-2936(2003).

    [45] Prasankumar R P, Attaluri R S, Averitt R D et al. Ultrafast carrier dynamics in an InAs/InGaAs quantum-dots-in-a-well heterostructure[J]. Optics Express, 16, 1165-1173(2008).

    [46] Addamane S J, Rashidi A, Mansoori A et al. Comparison of carrier localization effects between InAs quantum dashes and quantum dots in a DWELL (dashes- or dots-in-a-well) configuration[J]. Physica E: Low-Dimensional Systems and Nanostructures, 124, 114376(2020).

    [47] Ariyawansa G, Perera A G U, Raghavan G S et al. Effect of well width on three-color quantum dots-in-a-well infrared detectors[J]. IEEE Photonics Technology Letters, 17, 1064-1066(2005).

    [48] Jolley G, Fu L, Tan H H et al. Effects of well thickness on the spectral properties of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors[J]. Applied Physics Letters, 92, 193507(2008).

    [49] Jolley G, Fu L, Tan H H et al. The influence of doping on the device characteristics of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors[J]. Nanoscale, 2, 1128-1133(2010).

    [50] Cheng Y B, Wu J, Zhao L J et al. Ground-state lasing in high-power InAs/GaAs quantum dots-in-a-well laser using active multimode interference structure[J]. Optics Letters, 40, 69-72(2015).

    [51] Raghavan S, Rotella P, Stintz A et al. High-responsivity, normal-incidence long-wave infrared (λ~7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector[J]. Applied Physics Letters, 81, 1369-1371(2002).

    [52] Krishna S. Quantum dots-in-a-well infrared photodetectors[J]. Infrared Physics & Technology, 47, 153-163(2005).

    [53] Ling H H, Wang S Y, Lee C P et al. High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer[J]. Applied Physics Letters, 92, 193506(2008).

    [54] Unil Perera A G, Lao Y F, Wolde S et al. InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions[J]. Infrared Physics & Technology, 70, 15-19(2015).

    [55] Lay T S, Lin Z H, Chuang K Y et al. InGaAs quantum dots-in-a-well solar cells with anti-reflection coating[J]. Journal of Crystal Growth, 513, 6-9(2019).

    [56] Bugge F, Zeimer U, Sato M et al. MOVPE growth of highly strained InGaAs/GaAs quantum wells[J]. Journal of Crystal Growth, 183, 511-518(1998).

    [57] Schlenker D, Miyamoto T, Chen Z et al. Growth of highly strained GaInAs/GaAs quantum wells for 1.2 μm wavelength lasers[J]. Journal of Crystal Growth, 209, 27-36(2000).

    [58] Wan H W, Chong T C, Chua S J. Polarization-insensitive electroabsorption in strained GaInAs/AlInAs quantum well structures[J]. IEEE Photonics Technology Letters, 6, 92-94(1994).

    [59] Ahn D, Yoo T K. Theoretical analysis of strained-layer InGaAs/GaAs quantum-well lasers with gain suppression and valence-band mixing[J]. Applied Physics Letters, 60, 548-550(1992).

    [60] Varshni Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 34, 149-154(1967).

    [61] Coldren L A, Fish G A, Akulova Y et al. Tunable semiconductor lasers: a tutorial[J]. Journal of Lightwave Technology, 22, 193-202(2004).

    [62] Fan L, Fallahi M, Zakharian A R et al. Extended tunability in a two-chip VECSEL[J]. IEEE Photonics Technology Letters, 19, 544-546(2007).

    [63] Wei W X, Deng H Y, He J J. GaAs/AlGaAs-based 870-nm-band widely tunable edge-emitting V-cavity laser[J]. IEEE Photonics Journal, 5, 1501607(2013).

    [64] Yang Z P[D]. Research on 1.06 μm tunable external cavity semiconductor laser(2015).

    [65] Gu P, Chang F, Tani M et al. Generation of coherent cw-terahertz radiation using a tunable dual-wavelength external cavity laser diode[J]. Japanese Journal of Applied Physics, 38, L1246-L1248(1999).

    [66] Hoffmann S, Hofmann M, Kira M et al. Two-colour diode lasers for generation of THz radiation[J]. Semiconductor Science and Technology, 20, S205-S210(2005).

    [67] Chi M J, Jensen O B, Petersen P M. High-power dual-wavelength external-cavity diode laser based on tapered amplifier with tunable terahertz frequency difference[J]. Optics Letters, 36, 2626-2628(2011).

    [68] Zheng Y J, Kurita T, Sekine T et al. Tunable continuous-wave dual-wavelength laser by external-cavity superluminescent diode with a volume Bragg grating and a diffraction grating[J]. Applied Physics Letters, 109, 141107(2016).

    [69] Zhu R J, Wang S S, Qiu X L et al. InGaAs quantum well based dual-wavelength external cavity surface emitting laser for wideband tunable mid-infrared difference frequency generation[J]. Journal of Luminescence, 204, 663-667(2018).

    [70] Fan L, Fallahi M, Hader J et al. Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser[J]. Applied Physics Letters, 90, 181124(2007).

    Jian Wu, Yuhong Wang, Hanxu Tai, Ming Zheng, Ruonan Duan. Low-Dimensional Indium-Based Well-Dot Composite Quantum Structures and Their Optical Properties and Application Prospects[J]. Chinese Journal of Lasers, 2022, 49(19): 1901002
    Download Citation