[1] ROGGEMANN M C, WELSH B M. Imaging Through Turbulence[M]. Washington: CRC Press, 1996.
[3] PAXMAN R G, SCHULZ T J, FIENUP J R. Joint estimation of object and aberrations by using phase diversity[J]. Opt.Soc.Am., 1992, A9:1072-1085.
[4] PAXMAN R G, SELDIN J H, LFDAHL M G, et al.. Evaluation of phase-diversity techniques for solar-image restoration[J]. The Astrophysical Journal,1996,466:1087-1099.
[5] THELEN B J, PAXMAN R G, CARRARA D A, et al.. Maximum a posteriori estimation of fixed aberrations, dynamic aberrations, and the object from Phase-diverse speckle data[J]. J.Opt.Soc.Am., 1999,A16:1759-1768.
[6] VOGEL C R. Computational Methods for Inverse Problems[M]. Philadelphia: SIAM Press, 2002.
[7] VOGEL C R, CHAN T, PLEMMONS R. Fast algorithms for Phase Diversity-Based Blind Deconvolution[C]. Adaptive Optical System Technologies, Kona, Hawaii, USA. SPIE, 1998, 3353: 994-1005.
[8] LFDAHL M G, BERGER T E, SHINE R S, et al. Preparation of a dual wavelength sequence of high-resolution solar photospheric images using Phase Diversity[J]. The Astrophysical Journal, 1998,495:965-972.
[9] LFDAHL M G, SCHARMER G B. Wave-front sensing and image restoration from focused and defocused solar images[J]. Astron.Astrophys,1994,107:243-264.
[10] BYRD R H, LU P, NOCEDAL J, et al.. A limited memory algorithm for bound constrained optimization[R]. Report NAM-08, EECS Department, Northwestern University, 1994.
[11] ZHU C, BYRD R H, LU P, et al.. LBFGS-B: Fortran subroutines for large-scale bound constrained optimization[R]. Report NAM-11, EECS Department, Northwestern University, 1994.