• Chinese Optics Letters
  • Vol. 22, Issue 1, 011201 (2024)
Qian Cao1、2, Zhou Tong2, Lei Liu2, Jialiang Wang2、*, Kang Ying3, Fufei Pang1, and Youzhen Gui2、4、**
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • 2Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202422.011201 Cite this Article Set citation alerts
    Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui. Simultaneous transmission of time-frequency and data with co-amplification over urban fiber links[J]. Chinese Optics Letters, 2024, 22(1): 011201 Copy Citation Text show less
    References

    [1] H. Marion, F. Pereira Dos Santos, M. Abgrall et al. Search for variations of fundamental constants using atomic fountain clocks. Phys. Rev. Lett., 90, 150801(2003).

    [2] S. M. Foreman, K. W. Holman, D. D. Hudson et al. Remote transfer of ultrastable frequency references via fiber networks. Rev. Sci. Instrum., 78, 021101(2007).

    [3] I. Krikidis. Simultaneous information and energy transfer in large-scale networks with/without relaying. IEEE Trans. Commun., 62, 900(2014).

    [4] W. Schlüter, D. Behrend. The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J. Geodesy, 81, 379(2007).

    [5] B. J. Bloom, T. L. Nicholson, J. R. Williams et al. An optical lattice clock with accuracy and stability at the 10-18 level. Nature, 506, 71(2014).

    [6] T. Takano, M. Takamoto, I. Ushijima et al. Geopotential measurements with synchronously linked optical lattice clocks. Nat. Photonics, 10, 662(2016).

    [7] M. Tarenghi. The Atacama Large Millimeter/Submillimeter Array: overview & status. Astrophys. Space. Sci., 313, 1(2008).

    [8] S. Weyers, V. Gerginov, M. Kazda et al. Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks. Metrologia, 55, 789(2018).

    [9] W.-H. Tseng, S.-Y. Lin, K.-M. Feng et al. Improving TWSTFT short-term stability by network time transfer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 161(2010).

    [10] R. Wu, J. Lin, T. Jiang et al. Stable radio frequency transfer over fiber based on microwave photonic phase shifter. Opt. Express, 27, 38109(2019).

    [11] X. Zhu, B. Wang, Y. Guo et al. Robust fiber-based frequency synchronization system immune to strong temperature fluctuation. Chin. Opt. Lett., 16, 010605(2018).

    [12] F. Yin, Z. Wu, Y. Dai et al. Stable fiber-optic time transfer by active radio frequency phase locking. Opt. Lett., 39, 3054(2014).

    [13] H. Zhang, Y. Xiao, P. Qu et al. Active delay stabilization of a 440-km fiber link in a wideband microwave delay system. IEEE Photon. J., 11, 7100707(2019).

    [14] G. Yang, H. Shi, Y. Yao et al. Long-term frequency-stabilized optical frequency comb based on a turnkey Ti:sapphire mode-locked laser. Chin. Opt. Lett., 19, 121405(2021).

    [15] D. R. Gozzard, S. W. Schediwy, B. Courtney-Barrer et al. Simple stabilized radio-frequency transfer with optical phase actuation. IEEE Photon. Tech. Lett., 30, 258(2018).

    [16] C. Hu, B. Luo, W. Pan et al. Multipoint stable radio frequency long distance transmission over fiber based on tree topology, with user fairness and deployment flexibility. Opt. Express, 28, 23874(2020).

    [17] B. Wang, C. Gao, W. L. Chen et al. Precise and continuous time and frequency synchronisation at the 5×10−19 accuracy level. Sci. Rep., 2, 556(2012).

    [18] Q. Zang, H. Quan, K. Zhao et al. High-precision time-frequency signal simultaneous transfer system via a WDM-based fiber link. Photonics, 8, 325(2021).

    [19] O. Lopez, A. Haboucha, B. Chanteau et al. Ultra-stable long distance optical frequency distribution using the Internet fiber network. Opt. Express, 20, 23518(2012).

    [20] P. Krehlik, Ł. Śliwczyński, L. Buczek et al. Optical multiplexing of metrological time and frequency signals in a single 100-GHz-grid optical channel. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 2303(2021).

    [21] Z. Lu, Y. Gui, J. Wang et al. Fiber-optic time-frequency transfer in gigabit ethernet networks over urban fiber links. Opt. Express, 29, 11693(2021).

    [22] K. Predehl, G. Grosche, S. M. F. Raupach et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science, 336, 441(2012).

    [23] K. Turza, P. Krehlik, Ł. Śliwczyński. Compensation of the fluctuations of differential delay for frequency transfer in DWDM networks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 66, 797(2019).

    [24] N. Deng, Z. Liu, X. Wang et al. Distribution of a phase-stabilized 100.02 GHz millimeter-wave signal over a 160 km optical fiber with 4.1 × 10−17 instability. Opt. Express, 26, 339(2018).

    [25] B. Liu, X. Guo, W. Kong et al. Stabilized time transfer via a 1000-km optical fiber link using high-precision delay compensation system. Photonics, 9, 522(2022).

    [26] F. X. Chen, K. Zhao, B. Li et al. High-precision dual-wavelength time transfer via 1085-km telecommunication fiber link. Acta Phys. Sin., 70, 070702(2021).

    [27] Q. Liu, S. Han, J. Wang et al. Simultaneous frequency transfer and time synchronization over a 430 km fiber backbone network using a cascaded system. Chin. Opt. Lett., 14, 070602(2016).

    [28] F. Zuo, Q. Li, K. Xie et al. Fiber-optic joint time and frequency transmission with enhanced time precision. Opt. Lett., 47, 1005(2022).

    [29] X. Guo, Y. Qiu, B. Liu et al. A high-precision transfer of time and RF frequency via the fiber-optic link based on secure encryption. Appl. Sci., 12, 6643(2022).

    [30] L. Wang, Y. Liu, W. Jiao et al. Fast and on-line link optimization for the long-distance two-way fiber-optic time and frequency transfer. Opt. Express, 30, 25522(2022).

    [31] K. Turza, P. Krehlik, Ł. Śliwczyński. Long haul time and frequency distribution in different DWDM systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 1287(2018).

    [32] E. F. Dierikx, A. E. Wallin, T. Fordell et al. White rabbit precision time protocol on long-distance fiber links. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63, 945(2016).

    Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui. Simultaneous transmission of time-frequency and data with co-amplification over urban fiber links[J]. Chinese Optics Letters, 2024, 22(1): 011201
    Download Citation